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SUMMARY 

A description is given of the application of the Moving 
Finite Element CMFE] method to the solution of a non-linear 
diffusion equation modelling the behaviour of dopant in 
crystalline silicon. The method approximates the dopant 
concentration by a piecewise linear representation, as with 
conventional finite elements, but on a moving mesh whose 
position is computed at the same time as the solution. 
Although the number of unknowns is doubled in this way, the 
method is able to model moving features, such as steep fronts, 
with far fewer nodes. A number of special features of the 
method as applied here will be explained. Unlike in its 
original form no penalty functions are used, and this enables 
inversion of the full mass matrix and simple explicit Euler 
time stepping. 

The dopant concentrations encountered in the diffusion 
problem range over many orders of magnitude. In order to 
obtain uniform resolution of the concentration some data 
compression is required which must be devised in such a 
way that the physics of the problem, contained in the variable 
diffusion coefficient, is adequately represented. It has 
been found that an appropriate dependent variable to use is 
a velocity potential associated with the diffusion velocity. 

To illustrate the behaviour of the method the solution 
to a one-dimensional test problem will be presented. 
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1. INTRODUCTION 

In order to predict the expected electrical behaviour of 
a semiconductor device it is necessary to Know the 
distribution of dopant atoms within the device. When using 
crystalline silicon these dopant atoms are typically 
introduced into the crystal by ion implantation, which 
results in a high concentration in a shallow region near the 
crystal surface. The dopant then diffuses through the crystal 
during subsequent heat treatments. It is a model of this 
diffusion process that is considered here. 

A discussion of diffusion mechanisms involved in dopant 
diffusion in crystalline silicon can be found in Fair [1]. 
The dopant in a crystal can exist in two forms, mobile single 
atoms or stationary clusters of atoms. We shall denote the 
concentration of the first type of dopant by c and the 
second by c the total concentration being given by 
°A+Cc" A l t™ugh the diffusion of dopant is due only to the 
movement of the mobile atoms the rate of diffusion is 
determined by the electrical charge nearby. Both types of 
atoms can be electrically charged and so clustering alters 
the diffusion rate. 

The diffusion process can be modelled by the differential 
equation 

8 , , „ f n 1+BCn /n.) /„ n \ I C1.1) 
I t t V o c ) - V . | D l ^ e x (vcA+«cA ^ | 

e 

where B,n.,D., a are constants and n is the local electrical 
charge which1is taKen as B 
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where a represents the ratio of the electric charge of a 
mobile atom to that of a clustered atom. 

It is possible for clustered atoms to become mobile and 
vice versa and this is modelled by a simple first order 
chemical reaction assumed to be in equilibrium so that some 
function of c and c is Known. The model for arsenic is 
usually taKen as 

KcAne = cc" 
(1.3] 

From the above equations it is possible (because only one 
dopant is being considered) to write an equation 

8c 

3t 
V.. D(c) V c 

(1.4) 

for the total concentration c(=c +c ), where the form of the 
diffusion coefficient (D(c) is sfiown in fig.1 for typical 
concentrations encountered. The most significant property of 
D(c) is its variation over about two orders of magnitude. 
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When the dopant is initially implanted in the crystal it 
occupies a thin region just below the surface. Typically the 
distribution is taken to be Gaussian with distance below the 
surface. After heat treatment the distribution of dopant is 
required because it is the dominant factor in determining the 
behaviour of the resulting device. In particular, the 
position of the 'junction' and the dopant distribution about 
the junction is crucial. This distribution is difficult to 
calculate numerically because it occurs at concentrations of 
about 10 cm"3, which are typically 5 or 6 orders of 
magnitude smaller than the maximum concentration. '' The profile 
of the dopant is also difficult to calculate because it 
involves a steep front and the full history of the dopant 
profile is crucial to the distribution calculated about the 
junction. 

There are two ways in which we have contributed to 
overcoming these problems. The first is to introduce an 
important change of variable which has the effect of data 
compression and of making it easier to capture the steep 
front numerically. If the concentration c is used as the 
variable then', as a consequence of the range of values taken 
by c, good resolution is obtained only in the region of high 
concentration and large errors are introduced near the 
junction. Possible transformations to different variables 
(including In c)have been considered by Please and Sweby (2), 
who have found that a velocity potential associated with 
D(c) is able to give a good representation of the 
concentration over the entire solution range. This 
transformation, which is adopted here, involves solving for 
<}> w h e r e 

, c c (1.5) 
9 = — + In — 

n. n± 
For large c, <f> behaves like c itself while for small c, <|> 
behaves like In c. Equation (4) is now being transformed into 
a slightly different non-linear diffusion equation for the 
variable <t>. 

The second idea which has been contributed to this work 
is to employ the Moving Finite Element (MFE) method as the 
numerical solution procedure. The problem of tracking steep 
moving fronts has been considered by many workers, using 
both finite differences and finite elements. Finite elements 
are attractive in general through their capacity to work 
with irregular meshes while the MFE method gives the added 
capability of following steep fronts by moving the mesh with 
the front. In the second section of this paper we review the 
essential details of the method. 
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2 . THE MFE METHOD 

We now g i ve a s h o r t account o f the Moving F i n i t e Element 
method, as i n t r o d u c e d by M i l l e r (3) and considered f u r t h e r by 
Wathen and Baines ( 4 ) , Johnson ( 5 ) . 

We cons ide r approx imate s o l u t i o n s to the genera l 
e v o l u t i o n equa t ion 

u, - LCu) = 0 ( 2 . 1 ) 
t 

where L is the spatial differential operator under 
consideration. 

In the present case the function u will be the velocity 
potential <{>. In the present paper we confine the theory and 
the numerical results to one-dimensional problems. 

We taKe a semi-discrete approximation 

UCx.t) - I U,Ct) a {x.£tt)} 
J-1 J 

(2.2) 

where a is a standard piecewise linear finite element 
basis function on the grid defined by the N-dimensional 
vector _s of time dependent nodal positions (see Figs. 2.1 
and 2.2). 

M-1 'J > 1 

Figure 2.1 

P iece -w i se l i n e a r approximat ion 
U ( x , t ) 
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Figure 2.2 

Basis function a 
J 

Figure 2.3 

Basis function &. 

Partial differentiation of (2.2) with respect to time 
yields 

U.(x,t) = I U a,(x,sCtn + s.B,Cx.U(t),sCt)) C2.3) 
j = 1 J J J "J" 

where the dot denotes time differentiation and where 

R - 3U 

3j ~ " 33c "j 

may be regarded as a second type of basis function Csee 



278 

Fig. 2.3). The basis function a. is given by 

r 

; • < 

V 

X " S j - 1 
As, 

s . „ ~ x 
j + 1 As 

j + 1 

for s . £ x £ s . 

for s S x S s 

otherwise 

where As. = s. - s. . . 

The basis function 3. is given by 

m j a j 
for s £ x < s. 

Vl°J f ° r Sj K X " S J + 1 

AU. 
J 

where m = is the gradient of the approximation U on 
j ASj 

•f* h 

the j element. 

Minimising the square of the L„ norm of the residual 
of the left hand side of (2.1) 

|U " LCU)||L 

with respect to the 2N parameters U., s, yields the set of 
2N equations. 

<U - L(U),a,> = 0 

<Ut - LCU),3 > = 0 

C2.4) 

(j = 1 N) 

where <U,V> denotes the integral / UVdx. Substituting 
U given by (2.4) then gives the non-linear system 
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of ordinary differential equations 

AC^i = £(£) C2'5] 

which are Known as the MFE equations. In [2.5) 

£- cursi UN- SN ] T' 

A(^) is the MFE matrix which is square, symmetric and 2 x 2 
blocK tridiagonal with blocks given by 

A i j 

<a;L,a > < a
i ' P j

> 

L <e i,a j> <3 i.3 j> 

(2.6) 

and the elements of the vector gCy) are defined by 

S2i-1
 = <LCU).ai> 

12.7) 

g2± = <L(U),3i> 

Ci = 1,....N) 

The matrix ACy) of the system (2.5) of ordinary 
differential equations may be inverted using the pre
conditioned conjugate gradient method. It has been shown by 
Wathen (B) that the preconditioning of A(y) by the inverse 
of its diagonal blocks results in a very well-conditioned 
matrix and as a result the conjugate gradient method converges 
in a few steps. We therefore easily obtain 

y. = (A(yn_1 £(y) (2.B) 

In order to obtain the evolution of U. and a from 
(2.8) we must use a time stepping algorithm. It has been 
found that, provided no penalty functions are used in the 
minimisation, explicit Euler time stepping is sufficient. 

If L(u) contains second derivatives (as it does in the 
present application) the MFE method requires the evaluation 
of the inner products 

<L(U),3-i> 

where U exists only as a sum of delta functions at the 
XX 
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nodes and 3. is discontinuous at the nodes. One way round 
the problem is to seek an approximate solution which has a 
finite \ norm, but this of course leads to an entirely 
different structure for the resulting MFE matrix. As an 
alternative, and in order to take advantage of the structure 
of the MFE matrix in (2.6), as analysed by Wathen 8 Baines 
t4), we persevere with the approximation defined by [2.2), 
but introduce a special interpretation of the inner products 
{2.7) appearing on the right hand side of the MFE equations 
C2.5). 

Following Morton (7) we replace the inner products 

<Uxx'ai>J <U '^i* apPBar*ng on the right hand side of (2.5) 

by <w ,a,>, <w ,(3.,>, respectively, where w (x) is 
XX 1 XX 1 X 

some "recovered" function lying in a smoother space than 

Ux(x), such that w has a finite L„ norm. 

In the numerical results obtained by the method we 
have chosen w on element i as the quadratic defined by 
interpolating x the values 

stm + m±) at x = s1_ (2.9) 

w^(x) = ^ m± at x = H s i . 1 + s ^ 

k(m± + m i + 1) at x = si 

Note that w (x) is in general discontinuous at the nodes. We 
then obtainx 

<Wxx'V = TI { C V 10mi+1
 + m1 +2

] " Cmi-1 + 10mi + mi + i
) } 

Also 12.10) 

-1 

^xx'V = 12-{mi + 1
Cmi + 1

 + 10rVl + " W " Vmi-1+10mi+nW} 

(2.11) 
The values may also be approximated by a weighted recovery 
method. 

One other difficulty with the MFE method is that the 
inverse of A may be ill-conditoned when nodes are almost 
collinear or elements become very small. In the results 
given here an averaging device has been used to overcome 
these problems. 
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3. NUMERICAL RESULTS 

In figures 3, 4 and 5 we show how the transformation 
assists the numerical solution of a dopant diffusion problem. 
We consider arsenic diffusion in silicon, which is governed 
by the diffusion equation (1.1) with 3 = 100, 

IB 3 
n1 = 5x 10 cm . The transformation (1.5) is applied to 

obtain a new diffusion equation satisfied by $ which is 
approximated by an MFE description. The problem is solved 
on the interval 0<_ x <1 with Neumann boundary conditions 
at both ends. As the initial distribution we take a Gaussian 
profile centred at x = 0.25 with a standard deviation^ 
0.05. The height of the Gaussian is approximately 10 , 
although the problem is solved in non-dimensional form. 

The solution of this problem includes steep moving fronts 
which propagate outwards from the centre of the Gaussian 
while the magnitude of the peak is attenuated. The left-
moving front impinges on the x = 0 fixed boundary while the 
right-moving front propagates freely. 

Figure 3 shows the solution for the transformed variable 
<f> at times 0, 2500 and 5000 seconds. Figure 4 gives the 
corresponding graphs for the concentration c while figure 5 
shows the more commonly used In c (omitting the part of the 
curve below the axis.). In figures 4 and 5 the dotted line 
denotes the active concentration while the full line gives 
the total concentration. 
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Figure 3 = S. + m £ 
n i n i 

fo r the dopant d i f f us i on 
problem. 
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_ _ active concentration 

total concentration 

DC 

0.4 0.B 1.0 

Figure 4 The active and total arsenic concentration for 
the dopant diffusion problem. 
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— — active concentration 

total concentration 

0.0 0.2 0.A 0.6 0.8 1.0 

Figure 5 The log of the active and total concentrations 
for the dopant diffusion problem. 
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Note that the transformed variable is more uniform and 
easier to capture than c with rather few moving finite 
element nodes. 

Results compare favourably with those produced by 
standard finite difference codes. 

4. CONCLUSION 

In this paper we have presented two new ideas of use in 
the numerical simulation of dopant diffusion in silicon. The 
first is a change of dependent variable to smooth the severe 
steep fronts which occur in the solution of the highly non
linear diffusion equation for the concentration. 

The second (independent] idea has bBen to solve the 
equation numerically by the method of moving finite elements, 
a relatively new technique which has been partly developed 
by the authors. The results on a one-dimensional test 
problem are competitive using comparatively few elements, 
but the principal benefit is likely to come when the approach 
is extended to similar problems in two dimensions. In 
addition it is possible to deal with moving boundaries using 
the moving finite element technique which will allow the 
incorporation of oxide growth into the model. 
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