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ABSTRACT: A method for the two-dimensional computation of 
metallization and junction capacitances in multiconductor 
systems is presented. The charge distribution on the 
conductor surface and in the space charge regions is computed 
with a computer program using the finite element method with 
triangular elements. Hie initial grid is automatically 
refined. During the refinement process no angle smaller than 
a prescribed lower bound is generated. A postprocessor 
computes the coefficients of capacitance from the charge 
values. The program handles a variety of VLSI structures. 
Specific numerical examples are presented to show applications 
of the concept. 

1.) Introduction 

1.1) Organisation of the Paper 

Chapter 1.) explains the motivation behind the present 
paper. Chapter 2.) gives a brief survey of relevant 
literature known by the authors. The capacitance computation 
as outlined in this paper is a two stage procedure. The 
preliminary step, the computation of surface and space 
charges, is described in chapter 4.). The final step, the 
capacitance computation, is explained in chapter 3.). 
Examples in chapter 5.) close the presentation. 

1.2) Increasing Importance of Capacitances in VLSI 

The scaling theory of MQS transistors is the key to VLSI 
chip manufacturing. However, the progressive shrinking of the 
device dimensions creates a number of problems for circuit 
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designers. As outlined below a careful consideration of wire 
layout, circuit delays and crosstalk problems is necessary to 
ensure a successful chip layout. 

Fig.1-1 Interconnection line geometry 

First we investigate how the capacitance of an 
interconnection line is affected if a scaling factor 1/K, 
K > 1, is applied to a design to reduce the vertical and 
horizontal dimensions. Assume the rectangular wire of 
Fig.1-1. A wire of width W, height H and length L is located 
above a conducting ground plane. Between the wire and the 
plane is an insulator of thickness H and relative dielectric 
constant £r. $ is the specific resistance of the line 
material. By neglecting fringing effects the line capacitance 
(1.1a) and the line resistance (1.1b) become 

C = £0CrWL/tt 

R = fL/(WT). 

(1.1a) 

(1.1b) 

Using the scaling relations (1.2a-d) 

H' = H/K 
L' = L/K 
T' = 1/K 
W = WA 

(1.2a) 
(1.2b) 
(1.2c) 
(1.2d) 

the scaled capacitance (1.3) becomes 

C = € € W'L'/H' = C/K. (1.3) 

A similar consideration of the line resistance reveals 

R' = R-K. (1.4) 

We see from (1.3), (1.4) that the RC time constant of the line 
is not improved by scaling. So far our analysis has been 
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based on the assumption that designers will take the same 
circuit function and rebuild it on a smaller level. In 
practice they are more likely to place more components on the 
chip while maintaining it's area. With respect to the wiring 
that means the wire length is not scaled down provided that 
the chip architecture remains the same. 

Original Layout Scaled Layout K=2 

P D P • P - P 
D D D D D-D 

Fig. 1-2 

Fig.1-2 illustrates that the length of a line (i.e. a data 
bus) is conserved. Taking this into account (1.3) and (1.4) 
have to be modified and read now 

C = C (1.5) 

R' = R-K2. (1.6) 

2 
The time constant is now scaled up by K posing tight layout 
constraints if passive (parasitic) elements are not permitted 
to seriously degrade circuit performance. The maintainance of 
a suitable noise margin forces control of coupling 
capacitances between parallel and sometimes even crossing 
lines. Power requirements depend, in part, on the amount of 
capacitance at a gate output. For those reasons the precise 
knowledge of device and interconnect capacitances at the 
design phase of a chip is essential. For a more detailed 
analysis of VLSI layout problems the interested reader is 
referred to /2,7,10,5/. 

2) Existing Work 

The following is a brief survey over existing literature 
known by the authors and by no means intended to be 
exhaustive. A mathematical framework for the following 
problem is needed: For a given conductor geometry and a given 
region of interest (simulation region) compute the cofficients 
of capacitance for all conductors in the region. If the 
dielectric surrounding the conductors is nonlinear (i.e. 
semiconductor), then the conductor potentials must also be 
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yxven. For the linear case (i.e. silicondioxide as 
dielectric) bias point information is irrelevant. Two ways 
leading to a solution are widespread: 1) Problem formulation 
in integral equation (IEF) or 2) Problem formulation in 
partial differential equation (PDEF) form. 

The first approach is favored in /l, 8, 9, 17, 11, 12, 13/. 
The difficulty of the IEF is the need for an analytical 
expression of Green's function for a particular simulation 
region. It is usually hard to obtain and mostly contains 
infinite sums which may lead to slow convergence. Furthermore 
a singularity of type 1/x, x—X) is always present. This may 
be tackled by using weighted quadrature formulas as applied in 
/11,13/ to the IEF. Analytical integration of Green's 
function is shown in /1,17/. The IEF is good suited to the 
problem if Green's function is easy to calculate and the 
spacing between conductors is very large compared to the 
conductor dimensions. Using the IEF the electric field 
between the wires is not needed. (It is implicitly present in 
Green's function.) Only the field on the conductor surface is 
of interest. This poses an advantage if simulation regions 
are large or even infinite. 

PDEF requires the solution of Poisson's equation for 
nonlinear dielectrics and Laplace's equation for linear 
dielectrics. Usually this is done by discretization of the 
simulation region with finite element or finite difference 
methods. Tutorial papers on the subject are /4,18/. Computer 
implementation of PDEF, generally speaking, is more laborious 
than IEF. The payoff is its easy adaption to various kinds of 
simulation geometries. Ideas to overcome the sensitivity of 
discretization methods to electric field singularities at 
conductor vertices are presented in /6/. /14,15/ contain an 
investigation of progressive grids for discretization. 

3.) Computation of Coefficients of Capacitance 

The 3-conductor system of Fig.3-1 shall serve as an example 
for the following discussion. For the time being let us 
assume that all conductors are surrounded by a linear 
dielectric. The generalization to nonlinear media follows in 
paragraph 3.2). First of all we define C-H as the coupling 
capacitance between conductor i and conductor j, Cj_j_ as the 
self capacitance of conductor i, Q^ and <Pi as the charge and 
potential of conductor i, respectively. The number of 
conductors is k. The set of equations (3.1) shows the 
relationship between the variables. 
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Fig.3-1 Three-Conductor System 

The unknowns are the coefficients C^j. Please note, that 
solving (3.1b) is different from solving a system of linear 
equations Ax = b. The number of unknowns is k{k+l)/2 but only 
k-1 linear independent equations exist. The charge 
distribution Q = (Q]_, Q2, ... » Ofc) depends on the conductor 
potentials and is assumed to be known. Chapter 4.) of the 
paper outlines how to get the charges. The conductor 
potentials are not necessary in the linear case because the 
capacitance depends purely on the geometry of conductors and 
dielectric interfaces. Therefore, we are allowed to simply 
assume some sets of conductor potentials in order to compute a 
charge distribution Q until enough linear independent 
equations are available to match the number of unknowns. 

For numerical reasons we use k sets of potentials and setup 
k2 system equations. Clearly not all of these k2 equations 
are linearly independent. A computer algorithm can be 
employed to select those equations that result in the best 
possible condition number of the system coefficient matrix if 
more than the necessary k(k+l)/2 equations are available. 
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3.1) Three-Conductor Example 

We assume a set of conductor potentials S^ = CPj/0, 0, 0) 
and compute the conductor charges ]Qi, 1Q2, 1Q3. Ihe prefix 
index refers to the set S]_. The following six relat ions hold 
true 

Q12 = C12 ft (3.2a) 

Q „ = 0-" l (3.2c) 
Q l l = c l l * l <3-2 d> 
Q„ = 0 (3.2e) 
Q33 = 0. (3.2f) 

By summation of a l l contributions to the conductor surface 
charge one arr ives a t (3.3a-c) 

n1 ^ i C n + °12 + C l3} i H S 
Q2 =-¥C C1? (3.3b) 
Q3 * * [ C 13 ' ( 3 - 3 c ) 

Ihe procedure is repeated using S2 = (¥>L, V2, 0) which yields 
expressions (3.4a-f) 

Q12 = C12 (V, - %) (3.4a) 
Qff =Ct^ ft1 Z (3.4b) 
Q „ = C „ % (3.4c) 

«TC (3.4d) 
c ; ; % (3.4e) 

n23 I p23 
~11 " „ U 
<22 : ^22 v 2 
^33 " u ' 

Equations (3.5a-c) give the surface charges on each conductor. 

Q33 = o r * (3.4f) 

Ql = % c n + ui? ci9 + % C"n t3*53) 
Qi =-Ut? c|± + *T C„ + % C„ (3.5b) 
Q3 H ^ Cg _ ̂  C |

 2 23 (3.5c) 

Another repetition of the cycle with S3 = (̂ , ^ , ty$) yields 
two similar sets of equations not explicitly noted. Combining 
(3.3), (3.5) and the the result of the third cycle to matrix 
form yields an over-determined system of nine linear equations 
(3.6) 

Ax = b (3.6) 

with A the rectangular coefficient matrix, x the vector of 
unknown capacitances x = ( O Q , C^f ••• /C33) and b the vector 
of the charges b = ( j ^ , 3Q2, . . . , 3Q3). 

System 3.6 is transformed via QR-decomposition into 
equation (3.11). QR-decomposition i s a generalization of the 
well-known Gaussian elimination / 3 / , section 11. (3.6) i s 
solved in the sense that the L2~norm of the residuum vector 
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r = Ax - b is minimized. The linear least squares method, 
used for curve fitting, is a familiar application of 
QR-decomposition in two dimensions. 

We start by substituting the singular value decomposition 
(3.7) of matrix A into (3.6). U and V are orthogonal matrices 
as indicated by (3.8). The resulting equation (3.9) is 
multiplied from the left by ifl and the vector y defined in 
(3.10) is introduced. Finally, equation (3.11) is arrived at 
and solved. 

A = UQVT 

UT = u-1 

UQVTx = b 

y = VTx 

Qy = UTb = 

largest 

* 
= b 

element 

(3.7) 

(3". 8a) 
(3.8b) 

(3.9) 

(3.10) 

(3.11) 

b? of vector b* The ratio of the largest element b^ of vector b , i=l, 
k(k+l)/2 to b j , j=k+l,k2, provides an a posteriori quality 
indicator. This figure describes the number of significant 
digits in the result not affected by roundoff and/or 
truncation error. 

3.2) Generalization for Nonlinear Dielectrics 

The capacitance is no longer voltage independent. We are 
not allowed to simply assume a set of conductor voltages for 
the charge computation. Assert that the conductors are biased 
with the prescribed potentials <p^, Hfa, ty$. We employ the 
principle of linearization on the operating point of the 
circuit. Instead of the conductor potentials we now assume 
potential offsets Sx = (Al>U °' °)'

 s2 = (A*!* &V2' °) aX)d 

S3 = (£kVl# A*P2/ A ¥3) • Th e conductor potentials for the 
first cycle of the charge computations, yielding iQ]_, 1Q2 and 
1Q3, are y± + A V L » ¥2 and IP3, for the second cycle <J>L + Q<ft., 
^ 2 + A'fcf 1*3, and so on. In the nonlinear case the conductor 
potentials are replaced by the conductor bias plus the 
deliberately assumed potential offsets. Besides that, the 
method of paragraph 3.1) remains unchanged. The magnitude of 
the offset must be large enough to get a significant change in 
the charge and at the same time small enough to allow 
application of the linearization principle. A good 'rule of 
thumb' is to choose & < p = 1%...5% of the conductor bias. 
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4.) Computation of Surface and Space Charges 

Let us, again, firstly consider the presence of linear 
dielectrics only. To employ the method of paragraph 3.1} we 
have to calculate the surface charges on the conductors. We 
solve the Laplace equation (4.1) in the two-dimensional 
simulation region which represents a cross cut of the 
interesting conductor geometry. 

div grad ¥ = 0. (4.1) 

The solution of (4.1) is the potential distribution ¥>{x,y). 
By differentiation we get the electric field E. Integrating 
the normal component of the electrical displacement €-E over 
the conductor surfaces yields the charges. 

Reflecting upon junction capacitances we have to solve 
Poisson's equation (4.2) instead of (4.1). 

div Cgrad <p = -q (n^xp ((4M0 A T -

- niexp((lp-^)AT + Qp) (4.2) 

q is the electron charge, n^ the intrinsic number, V™ the 
thermal voltage, € the dielectric constant, fy, <^ the 
quasifermipotential of the electrons and holes, respectively, 
and Gp the concentration of active dopants. Since, the 
junction capacitance we are interested in exists only in 
reverse biased junctions, an accurate model of the reversed 
biased pn-junction alone is sufficient for our purposes. We 
modify the right hand side of (4.2) by the use of a depletion 
approximation (4.3a,b). Minority carriers are neglected. <^ 
and & are set to the constant anode and cathode potential of 
the junction, respectively. 

Anode region: 

div Cgrad <p = - q ^ e x p ^ ) -exp^/V^ + C^) (4.3a) 

Cathode region: 

div Cgrad * = qtn.expH^) -exp(VAT) + Q,,) (4.3b) 

After (4.3) has been solved it's right hand side, which 
physically corresponds to the space charge density, is 
integrated for the anode and cathode region separately. Due 
to the charge neutrality theorem the same amount of charge 
must be located in the anode and cathode, respectively. The 
satisfaction of charge neutrality can be used to reject 
inaccurate solutions. 

Surface and space charges computed in the described manner are 
entered into equation (3.3) and (3.5). 
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4.1) Solving the Partial Differential Equation 

The finite element method is used to solve (4.1) or (4.3). 
A computer program has been developed that uses triangular 
elements with biquadratic shape functions. The program can be 
adapted to a wide variety of simulation geometries due to the 
easy handling of complicated boundaries with finite elements. 
The user specifies an initial grid coarse enough to describe 
the simulation region. The doping profile and the bias of the 
circuit complete the input data. The initial grid is 
automatically refined in the course of computation. The 
selection of a well suited triangulation is essential for 
convergence and solution accuracy. 

The importance of sufficient small numerical errors in the 
potential becomes clear by the following reflection. 
Physically the carrier concentration in the device is 
determined by the doping profile. The carrier density is high 
in the space charge region, but is several orders of magnitude 
lower in the distant diffusion zones. Because of the 
depletion approximation (4.3a,b) only majority carriers are 
considered. Global charge neutrality requires that an amount 
of space charge in the anode is compensated by a charge of the 
same amount, but with different sign in the cathode. An 
error, for example, of VT (25mV at room temperature) falsifies 
the carrier concentration by a factor of 2.7n^; which is about 
4-1010 cm 3 for silicon. Therefore, the space charge in the 
diffusion regions may be severely in error. Since the charge 
balance is lost, a 25mV error in the potential makes the 
result useless. Hence, potential errors of VT/10 or lower 
must be achieved. 

Another important point to be considered is the refinement 
of the mesh. As shown, e.g., in /16/ the discretization error 
depends on the smallest angle in the triangulation. To 
decrease this error it is not sufficient to simply increase 
the number of elements (triangles). At the same time one must 
assure that the element angles are all greater than a lower 
bound 4. Our grid generator fulfills this reqirement. 
Practical values for 4 are 15°...25°. Furthermore, the 
magnitude of that single parameter 4 controls the 'character' 
of the grid. A small <f results in a very progressive, 
economic grid. A more uniform, slowly varying grid is 
achieved with a large 4. We would like to recall the fact 
that an overly progressive grid can lead to a bad condition 
number of the stiffness matrix and therefore should be 
avoided. 
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5.) Results 

5.1) Linear Capacitances 

The simulation geometry is shown in Fig.5-1. The influence 
of the spacing S and the conductor-ground plane distance H on 
the capacitances Cs and Cc are investigated. H takes values 
from 0.1 to 1.2 p m and S is in the range from 0.2 to 2.4 p m. 
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T 
• 

H 

°0 

W S W 8W 

i 

WM, L 

\=C s 

'W/A 
rc 

3 

V/////////////////////////////////M 
Fig.5-1 W = 2.0J»m T = 1.0 p m 

The results are shown in the pseudo-3D plots in Fig.5-2 and 
Fig.5-3. The distances H and S are the independent variables. 
Fig.5-2 shows the substrate capacitance Cs and Fig.5-3 shows 
the coupling capacitance Cc. Although the S variation shows 
the main influence on CQ, one observes a non-negligible 
increase of Ĉ , while increasing H. The fringing field is 
shielded well by the ground plane when H is low. If the 
transmission lines are withdrawn from the ground plane a more 
widespread fringing field is present. Thus, Cc shows an 
increase in spite of the constant S. 

A comparison between the numerically computed capacitances 
and the classical parallel plate formula is shown in Fig.5-4 
and Fig.5-5. The dependent variable is Cg/Cgo in Fig.5-4 and 
Cc/Cco i n Fig.5-5, respectively. 

Cso " Co*W/H (5.1a) 
Ceo • €0-T/S (5.1b) 

The use of (5.1) is inadequate for an accurate circuit layout. 
The computed capacitance values are typically 30%...100% 
larger than (5.1) predicts. 
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5.2) Influence of Junctions on the Capacitance 

The second example is based on the structure shown in 
Fig.5-6. The polysilicon wire i s isolated from the substrate 
and the aluminum by a layer of silicondioxide. The substrate , 
which is p-doped with %=10l5 cm-3f contains an n-region with 
1^=1017 cm-3. ij^g aoping profi le is assumed to be a step 
prof i l e . The aluminum wire contacts the cathode. A 
simplified f i r s t analysis of the structure t r ea t s the 
oxide/substrate interface as a conducting plane. The wires 
are assumed to be ideal conductors a l so . This leads to the 
simulation geometry shown in Fig.5-7. All distances are in 
units of Ji m. The solid l ines symbolize Dirichlet boundaries. 
Along the broken l ine a homogenious von Neumann boundary 
condition is applied. The capacitance C is calculated to be 
0.967nF/m. 

Fig.5-6 
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Fig.5-7 Reduced Geometry for Simulation 
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Fig.5-8 Full Geometry for Simulation 

Simulating the full structure as shown in Fig.5-8 is much 
more costly. Three conductors will now be considered: the 
polysilicon wire, the p-region of the substrate and a 
1compound' wire consisting of the aluminium contact plus the 
n-region. A critical point is the intersection of the 
aluminum/n-region interface with the vertical conductor edge 
(arrow). The potential on the conductor is defined resulting 
in a boundary condition of Dirichlet type. The Al/n interface 
is also a Dirichlet boundary, but the conductor potential must 
be offset by the built-in voltage. This causes a singularity 
in the boundary potential, which thereby implies the need for 
a fine discretization. Otherwise, the potential perturbation 
would reach far inside the simulation region. Along the 
pn-junction fine discretization is essential for obvious 
reasons. The capacitances computed at a bias of UBUII<=0V, 

U M = 4 V ' Upoiy=.5V are Ci2=721pF/m, Ci3=181pF/m and 
C23=756pF/m. The heavy distortion of the field under the poly 
wire caused by the pn-junction is responsible for the large 
values of C12 and C23. The theoretical voltage dependence of 
the capacitances was not observed. The voltage dependent 
charge in the depletion region is dominated by the constant 
charge amount on the aluminum. Therefore the capacitances are 
nearly constant. 

6.) Conclusion 

We have outlined the importance of accurate capacitance 
computation for the purpose of VLSI design. A method for the 
calculation of linear and nonlinear interconnection 
capacitances has been presented. The method gives an 
a posteriori estimate of roundoff/truncation error in the 
result. 
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A depletion approximation suitable for accurate computation 
of semiconductor junction capacitances has been presented. 
The substrate and coupling capacitance of a transmission line 
pair vs. line and line to ground spacing was shown in pseudo 
3D-plots. The influence of junctions on the capacitance 
configuration of a VLSI-structure was studied in a final 
example. 
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