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Abstract . 

In recent years the numerical simulation of semiconductor devices 
has become a state-of-the art technique for the development and 
characterization of new devices, particularly for very large scale 
integrated circuits. The miniaturization of the single device, which 
is the major prerequisite of VLSI, brought about the necessity to deal 
with fairly expensive numerical models in order to obtain high 
accuracy. 

The basis of numerical models for semiconductor devices are the 
well known Poisson equation, current continuity equations and current 
relations. This physical model has historically proved to be adequate 
for the simulation of many categories of devices. The reason why 
these models are adequate is that integral quantities (like current or 
voltage) are rather insensitive to quite strong deviations of local 
quantities. Thus, even when local current density or electric field 
are poorly predicted, e.g., in hot electron areas, device 
characteristics are predicted quite accurately even by classical 
models. In future submicron devices, however, areas in which 
classical models fail, cover a large part of the device. This leads 
to a poor prediction of integral quantities also. Therefore it is 
necessary to review the derivation and associated assumptions of the 
traditional basic semiconductor device equations. 

The goal of this presentation is to highlight the assumptions 
which may cause the traditional model to fail in predicting various 
effects which occur prominently in miniaturized (submicron) devices. 
The theoretical background of current transport in semiconductors will 
be reviewed to help device engineers in properly applying simulation 
programs. 

1. Some Fundamental Properties. 

To analyze a semiconductor, a mathematical model has to be given. 

The equations which form this model are commonly called the basic 

semiconductor equations, which can be derived from Maxwell's equations 

(1.1), (1.2), (1.3) and (1.4), several relations obtained from 

solid-state physics and various - sometimes over simplified -

assumptions. 
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rot H = J + lE (1.1) 
0t 

rot I = -p. (1.2) 

div D = ? (1.3) 

div B = 0 (1.4) 

E and D are the electr ic field and displacement vector; H and B 
are the magnetic field and induction vector, respectively. J denotes 
the conduction current density, and $ is the electr ic charge density. 

The next sections will be devoted entirely to an outline of the 
procedures which have to be carried out in order to derive the basic 
semiconductor equations. 

2. Poisson's Equation. 

Poisson's equation is essentially the third Maxwell equation 
(1.3). However, to make this equation directly applicable to 
semiconductor problems, some manipulations have to be undertaken. We 
f i r s t introduce a relation for the electr ic displacement vector D and 
the electr ic field vector E (2.1). 

D = C-E (2.1) 

€ denotes the permittivity tensor. This relation is valid for 
a l l materials which have a time independent permittivity. 
Furthermore, polarization by mechanical forces i s neglected [10]. 
Both assumptions hold relatively well considering the usual 
applications of semiconductor devices. However, an investigation of 
piezoelectric phenomena, ferroelectric phenomena and nonlinear optics 
is impossible when using only (2.1). 

As the next step i t i s desirable to relate the electr ic field 
vector 1" to the electrostat ic potential 41 For that purpose we solve 
(1.4) by introducing a vector field A and remembering that "div rot" 
applied to any vector quantity i s always zero. 

_ - 1 3q» 
B = rot A div A = -j-J^r ^2 '2) 

The second term of (2.2) is the well-known Lorentz convention. 

We substitute (2.2) into (1.2) and we obtain readily (2.3). 
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rot ( E + p = 0 (2.3) 

If "rot z = 0" holds for a vector field z we know from basic 

differential calculus that z can be expressed as a gradient field. 

Therefore, the electric field vector E can be expressed as: 

E = -f^ - grad V (2.4) 
wt 

Now we substitute (2.4) into (2.1) and then the result into 
(1-3). 

D = - C ' P - €-grad 4> (2.5) 

div ( C - S + div (€-grad 4>) = -$ (2.6) 

div «*•# = " p ' ^2 (2-7) 

The divergence term in (2.7) accounts for the effects of wave 

propagation. The permittivity € will be treated here in all further 

investigations as a scalar quantity. In principle it has to be 

represented as a tensor of rank two. The structure of € depends on 

crystal symmetry. If the material has one of the cubic symmetry 

groups (as Si and Ge) , C is a scalar matrix. In other cases £ has 

different components. If ,however, the anisotropy is not very 

pronounced, the approximation of a scalar € is not too bad. 

Inhomogeneity effects of the permittivity have been neglected in 

(2.7). There does not exist any pronounced experimental evidence for 

inhomogeneity effects. Considering the small size of the active area 

of modern devices wave propagation phenomena may be neglected even at 

high frequencies. Thus, we finally end up with (2.8) which is the 

well known form of Poisson's equation, 

div (C-grad 4>) = -$ (2.8) 

The space charge density ? can be further broken apart (2.9) into 

the product of the elementary charge q times the sum of the positively 

charged hole density p, the negatively charged electron density n and 

an additional concentration C which will be subject of later 

investigations. 

9 = q - ( p - n + C ) (2.9) 
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From a purely mathematical point of view (2.9) represents a 

substitution only, without introducing any assumptions. However, 

additional assumptions are brought about by modeling the quantities n, 

p etc. as will become clearly apparent in chapter 3. 

If we introduce (2.9) and the assumption of a homogeneous scalar 

permittivity into (2.6), we obtain the final form of Poisson's 

equation to be used for semiconductor device modeling. 

div grad 4 » = ^ - ( n - p - C ) (2.10) 

3. Continuity Equations. 

The continuity equations can be derived in a straightforward 

manner from the first Maxwell equation (1.1). If we apply the 

operator "div" on this equation we obtain: 

div rot H = div J + j*l = 0 (3.1) 

Now we split the conduction current density J into a component J 

caused by holes and a component J caused by electrons: 

J = Jp + Jn (3.2) 

Furthermore, we assume that all charges in the semiconductor, 

except the mobile carriers electrons and holes, are time invariant. 

This is an acceptable assumption if carrier lifetimes are long. Large 

errors occur in the vicinity of boundaries or in areas of strong 

generation or recombination, specially, under rapidly varying 

transient conditions. 

3c 
3t - ° <3-3) 

If we substitute (2.8) and (3.2) into (3.1) and if we make use of 

(3.3) we obtain: 

- - 3 
div ( Jp + Jn ) + q-I_( p - n ) = 0 (3.4) 

This result is interpreted fairly trivially. It just means that 

sources and sinks of the total conduction current are fully 

compensated by the time variation of the mobile charge. In order to 

obtain two continuity equations a few formal steps have to be carried 

out. We first define a quantity R in (3.5) and, secondly, we rewrite 

(3.4) by making use of the definition R. 
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div Jn - q-lH = q-R (3.5) 

div Jp + q-~E = -q-R (3.6) 

It is obvious that we can not gain information by writing one 

equation (3.4) in two different ways (3.5), (3.6). However, these 

formal steps enable us to Interprete the equation more easily. The 

quantity R can be understood as a function describing the net 

recombination of electrons and holes. Positive R means predominance 

of recombination and negative R means predominance of generation. So 

far we have no information about the structure of R except equations 

(3.5) and (3.6). R has to be modeled carefully using knowledge from 

the solid-state physics of semiconductors. If we have a model for R, 

equations (3.5) and (3.6) can really be considered as two equations. 

It seems worthwhile to note explicitly here that there is no necessity 

or even evidence that R can be expressed as a function depending only 

upon local quantities and ret upon integral quantities? non-local 

generation or recombination phenomena may certainly occur in 

semiconductor devices considering only the derivation of the 

continuity equations. 

4. Carrier Transport Equations. 

The derivation of current relations for the semiconductor 

equations is a very cumbersome task. It is not the intention of this 

paper to cover the extraordinarily wide field of physics behind all 

the considerations necessary to derive the current relations in 

detail. Therefore, some of the required relations will be given 

without proof, but with reference to a text more specialized in that 

field. 

Without loss of generality the current density of charged 

particles is the product of the charge constant per particle, the 

particle density and the average velocity (drift velocity) of the 

particles. So the hole current density and the electron current 

density can be written as (4.1) and (4.2), respectively. 

Jp = <3'P-Vp (4.1) 

Jn - -q-n-vn (4.2) 
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The major problem is to find expressions which relate the average 

carrier velocities bo the electric field vector E and to the carrier 

density. In order to obtain information about the drift velocity we 

have bo describe the carrier density by means of a distribution 

function JL. in phase space which is the space of spatial coordinates 
— x — T 
x=(x,y,z) , momentum coordinates k=(k ,k ,k ) and tune t, thus a 
seven dimensional space. The distribution function determines the 
carrier density per unit volume of phase space. By integrating the 
distribution function over the entire momentum volume V, we obtain the 
carrier density V(x, t). V stands for n or p, denoting electrons or 

holes. 

^rlyzx.* 6k = V(x,t) (4.3) 

This normalization (4.3) defines £ . as a probability. In the 

l i terature various different normalizations can be found, e.g. [8], 

[11] . 

The distribution function has the property that i t s derivative 
along a subsystem trajectory xj-(t), K-(t) with respect to time 
vanishes in the entire phase space in compliance with the Liouville 
theorem about the invariance of the phase volume for a system moving 
along the phase paths or an account of the conservation of the number 
of s tates [11]. The Liouville theorem, unfortunately, holds for a 
constant number of part icles only. The following considerations are 
therefore excluding effects of generation or recombination. 

g^fyCXyCtblytht) = 0 (4.4) 

By expanding the total derivative we obtain: 

3fy dky dx^ 

-$t + 9radk V~dt + g r a d * V~dt = ° (4-5> 

Here grad. denotes the gradient operator with respect to the 
momentum coordinates T<; grad is the gradient operator with respect to 
the spatial coordinates x. Equation (4.5) shows that the variation of 
the distribution function a t each point of phase space (x,k) with time 
is caused by the motion of part icles in normal space (x) and in 
momentum space k. 
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The der iva t ive of E . with respec t to time mul t ip l ied with 

P lanck ' s constant h equals the sum of a l l forces F, These forces have 

to be devided in to two c l a s ses (4 .7 ) . 

dlV fv A h 

V ? i f e + 1 V i {4'7) 

Fj. comprises forces due to macroscopic external fields and F„. 

denotes forces due to internal localized crystal attributes like 

impurity atoms or ions, vacancies, and thermal lattice vibrations. It 

is (quite) impossible to calculate the effect of internal forces F„. 

upon the distribution function from the laws of dynamics [11]. 

Statistical laws have to be invoked instead. By introducing the 

quantity &.(k,k') 'dk' which is the probability per unit time that a 

carrier in the state 1< will be scattered into the momentum volume dk', 

we can write the internal collision term as follows: 

gradk ^ - — = 

= f { fy(x,k,t) • [l-tyx,]? ,t) ] -Sy(k,k')-

- fy(x,k',t)- [l-^r(xrk,t)]-E^(k',k) }-dk' (4.8) 

(4.8) is termed the collision integral. The first term in the 

integrand describes the number of carriers scattered from the state k 

into the volume element dk' per unit time. Correspondingly, the 

second term in the integrand of (4.8) equals the number of carriers 

scattered from volume element dl?' into state k per unit time. *y(x, 

k, t) gives the probability that a carrier initially occupies the 

state ic. [1 - fj-(x,1<', t) ] gives the probability that the volume 

element dk1 is initially unoccupied and can, therefore, accept a 

carrier (no volume of the phase space can be occupied by more than two 

carriers (these having antiparallel spin) because of the Pauli 

exclusion principle). Sy.Jk',!?') gives an a priori probability of the 

scattering event. There are different scattering mechanisms in a 

semiconductor; for each a SL.(T<,k') is present. In nonpolar 

semiconductors (like Ge and Si) the collision of carriers with phonons 

are randomizing and lead to an isotropic behavior. The collisions 

between carriers and ionized impurities, however, are dominated by 
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small scattering angles, thus leading to an anisotropic behavior of 

the scattering. In polar semiconductors, however, even carrier-

phonon scattering is partially anisotropic. Thorough investigations 

about the scattering probability Sync,]?') can be found in, e.g., 

161. 

The derivative of jt. with respect to time represents the group 

velocity of the carriers. 

dXy 

-a t = ^ (4-9) 

We have now to substitute the relations (4.6) to (4.9) into 
(4.5), and we obtain the Boltzmann transport equation in explicit 
form. 

-Jt + -FT'9radk V + V g r a d * V = 

i { fy(X, k , t) * [l-fy(X,]? , t) ] • Sy(l< ,^ ' ) ~ 

- £y(x^P, t ) - [ l - fy(^k, t ) ] -Sy(k ' ,k) }-dk' (4.10) 

A fairly accurate approach would be to directly solve (4.10) in 

order to calculate carrier densities and drift velocities. However, 

this is an extraordinarily difficult task to accomplish. (4.10) 

represents an integro-differential equation with seven independent 

variables. Ttiis equation does not admit a closed solution. It rather 

requires the use of iterative procedures which, moreover, are scarcely 

suitable for numerical approaches [3], or additionally, invoke very 

stringent assumptions [8]. 

An alternative approach to solving the Boltzmann equation 

consists in simulating the motion of one or more carriers at 

microscopic level with Monte Carlo methods, e.g. [9]. However, this 

category of simulations is very computationally intensive [15], [16] 

and therefore, with a few exceptions only, not suitable for 

engineering application. 

One should be aware of the fact that the validity of the 

Boltzmann equation (4.10) implies already several assumptions (cf. 

[3], [4]). 

-4 
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• The Boltzmann equation is a quasi-classic equation, thus not 
covering any quantum mechanical effects. Quantum effects to be 
found in actual devices are tunneling phenomena, quantization of 
energy levels (e.g. in sub-J* field-effect devices or due to strong 
magnetic fields (Landau levels)) and various contact phenomena. 

• The Boltzmann equation in this form is valid for a constant number 
of particles only, thus not covering generation or recombination 
effects. 

• The scattering probability is independent of external forces. 
• The duration of a collision is much shorter than the average time of 
motion of a particle; collisions are instantaneous. 

• Carrier-carrier interaction is negligible. This effect would change 
the integrand of the right hand side integral in (4.10) highly 
nonlinear in £ . [1]. 

• External forces are almost constant over a length comparable to the 
physical dimensions of the wave packet describing the motion of a 
carrier. 

• The band theory and the effective mass theorem apply to the 
semiconductor under consideration [20]. The band structure is valid 
strictly in an endless, undisturbed crystal only. It can be shown, 
however, that the band structure is a good approximation for a real 
crystal. In areas where the periodic lattice is strongly disturbed, 
like in the vicinity of boundaries, contacts or in areas of high 
doping concentration, the band structure cannot be expected to hold. 

However, it is our intention here to outline the derivation of 

the classical current relations and only to pinpoint the problems 

associated with much more basic and error-prone models. 

By assuming that all scattering processes are elastic and by 

neglecting all effects caused by degeneracy the scattering integral 

can be approximated and the Boltzmann equation is reduced to a pure 

differential equation [6], [8], [20], The assumption of elastic 

scattering can not be justified for hot electrons or holes. Even at 

moderate carrier temperatures some inelastic scattering mechanisms are 

present( depending on the material). Nondegeneracy is a good 

approximation only if doping concentration and carrier densities are 

not too high. 

~3t + -ft-'gradk % + v g r a d x V = zz— (4,11) 

The physical motivation for the right hand side of (4.11) is as 

follows: Suppose that at some moment of time t=0 all external forces 

are switched off and £. is homogenous. 

flfe 
-^-•gradk fy + Uy-gradjc fy = 0 (4.12) 

It follows from (4.11) that the distribution function will change 

as a result of collisions only. (4.13) will reduce to: 
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3V "v-hfo 
"3t - " — ^ — <4-13) 

The solution of this differential equation is quite simple. 

fy(x",k,t) = f^xVk) + [fj^x/k,") - ^ M l - e " ^ (4.14) 

fj. is the equilibrium distribution function, and the quantity L. 

shows the rate of return to the state of equilibrium from the 

disturbed state, therefore, it is termed the relaxation time. It 

should be noted that the relaxation time depends on the momentum. 

This is a very simplified model; in the general case l.is a tensor of 

rank two. In case of both inelastic and anistropic scattering no 

meaningful relaxation time can be declared at all. In other cases a 

meaningful relaxation time may be defined. Under the very restrictive 

assumptions stated above the problem of solving the Boltzmann equation 

can be eased drastically by modeling the relaxation time as only a 

function of energy [8]. 

In order to obtain the current relations from (4.11) we multiply 

this equation with the group velocity Uy, and then we integrate the 

equation over momentum space. In the following derivation the most 

general case is assumed, implying that R. (the generalized effective 

mass tensor) and L. (the relaxation time tensor) are tensorial 

quantities which are It- dependent. Furthermore, no special form of 

the distribution function is assumed (meaning that the distribution 

function may be any function making physical sense, and not only a 

Maxwellian or Fermi-Dirac distribution, which cover special cases 

only). 

I V"3Tdk + IV (TT"g r a dk V" d k + I V ( V g r a d * V"dk = 

•t t y r - dk (4.15) 

The first integral of (4.15) is quite easy to evaluate, because 

the group velocity depends on £ . only. Therefore integration over the 

momentum space and differentiation with respect to time may be swapped 

and the integral evaluated. 
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, _ *$r _ 3 . _ _ , 3 
/ uy-jfc-dk = 4 r */ u y f y d k = 4-lP'a-(V-<iy>) (4.16) 
Vk o t Vk c 

The < > brackets denote the mean value of a physical quantity 

(scalar or vectorial) weighted by the distribution function. The 

definition of the mean of a physical quantity x is: 

/ x-fydk / x-fy-dk 
Vk Vk 

<x> = -7 — = * (4.17} 
/ fydk 4-n3-V 
Vk 

The second integral of the Boltzmann equation is called 'force 

term' for obvious reasons. The external forces are independent of 1c. 

(if no magnetic field is present). The gradient operator and the 

multiplication with R. may be summed up in one divergence operation 

giving (4.18). 

_ %e _ 1 _ _ _ 
/ uy- (-=—• gradkfy) -dk = ^-/ uydivj^E^-fy) -dk (4.18) 
Vk n V k 

The multiplication with the group velocity in (4.18) may be 

concentrated within the divergence operator by the relation (4.19): 

divk(uir (Ê fe-fy)*) = ujrdivj^B^'fy) + gradkuy- (f̂ fe-fy) (4.19) 

So we obtain two new integrals for the second part of (4.18). 

z-*/ liy'divj^Eyg^fy) -dk" = %••{ divj,(uy» (lye'f«)*)dk -
n Vk ^ Vk 

1 . _ _ 
-=-•/ g rad k uy( iye - fy )dk (4.20) 
" Vk 

Applying the Gauss i n t e g r a l theorem to the second i n t eg ra l of 

(4.20) and evaluating the gradient operator in the t h i r d y i e ld s 

(4.21) . 

!-•/ uy-divfctfye'fy^dk" = ir*f*V" $W*y)**<3A -
* V k * A 

t* 
1 (E»e-fy)-dF (4.21) 

The surface integral vanishes by virtue of the periodicity of the 

first Brillouin zone in the momentum space (shown by elementary 

arithmetic). The second term of (4.21) may be evaluated by the mean 

value theorem (4.17). 
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- / jyi-E^-fydk = -4-i$-V-<M-1-Fye> (4.22) 
Vk ~ 

If we take a magnetic field into account, the external forces 

become dependent en the group velocity. Provided that the thermal 

energy of the carriers is much greater than the energy in the magnetic 

field (meaning that quantization effects are neglible, which is a 

reasonable assumption at room temperature and not too high fields) we 

can express the force acting on a carrier by 

Ê fe = q- (E+uy x B) (4.23) 

The electrical component is still independent of the group 

velocity and may be treated as in the above derivation with 

Fyg = q-E (4.24) 

as the external force and will therefore not be covered here. 

The magnetic term, however, is treated seperately now. For the force 

term with a magnetic field only we obtain 

=-•/ u y (q- (uy*B) -grad^ry) -dk (4.25) 
n Vk 

Now we make use of the i d e n t i t y 

divk((uyxB) -fjfi = (I^pB)-grad^ty + fydivj^uyxB) (4.26) 

The t h i r d term of (4.26) i s zero . This can be proved by the 

r e l a t i o n (4.27) . 

div^(uyxB) = B-rotfcUy - u y r o t k B (4.27) 

The group ve loc i ty i s r e l a t ed to the momentum vector by a 

symmetric matrix (the general ized e f fec t ive mass t en so r ) . Therefore 

the r o t operator applied t o the group ve loc i ty g ives a zero vec tor . 

The magnetic f i e ld i s independent of the momentum, giving zero as the 

r e s u l t of the th i rd term of (4.27) a l s o . Now we use (4.26) in (4.25) 

and obta in (4.28) . 

q / _ _ _ _ q - _ _ _ _ 
s-'l u y ((uyxB) -gradufy) «dk = j- 'J uydiv k((uyxB) -fy) -dk (4.28) 
11 Vk B Vk 

By exploi t ing the fac t t h a t 

divfc(uy (uyxB) *fy) = uydivfc((uyxB) fy) + gradj jy- (uyxB) fy (4.29) 

we rewri te (4.28) as 
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r--/ uw-divk((iMcB)-fjri-dk = =••{ d i v k ( ( u y (uycB) *-fy)-dk 
ft Vk ^ Vk 

q , — _ _ _ 
-r--j graduuy (upcB) *fydk (4.30) 
"" Vk 

Using the Gauss integral theorem and evaluating the gradient 

operator yields: 

q , _ _ _ _ q f— — — + — 
r-'J uydlvk((uycB) -fy) -dk = z-Juy ((uyxB) )-fydA-
* V k ^ A 

-q-ZC.1- (iy«B) -fjr^ ^4-315 

The surface integral vanishes for the same reason than in (4.21) 

The third term may be evaluated by our well-known mean value theorem, 

giving (4.32) as the final result for the 'force term' with a magnetic 

field only. 

?-•/ iy- ((u&®) -gradkfy) -dk = -4l&'V'q-<l\}- (ujjKB) > (4.32) 
11 Vk -" 

The result obtained in (4.32) may be simply added to the 

electrical force term, giving (4.33) as a general result covering an 

electric and a moderate magnetic field simultanously. 

d' V (*ife9radkfy) -dk = -4l£K]- (^-E^KM^
1- (uyxB)>) (4.33) 

The third term of the integral of the Boltzmann equation may be, 

at first, treated in a similar way as in (4.18). uL. is solely 

dependent on ¥; therefore the second multiplication with the group 

velocity and the gradient operator with respect to "x may be put in one 

divergence operation, giving (4.34). 

/ ujf (iy*gradxfy) «dk" = / uy- (divx(uy-fy)) -di< (4.34) 
Vk Vk 

Even the first multiplication with II- in (4.34) may be 

concentrated within the divergence operator by rewriting the product 

of the group velocities as a tensorial quantity. 

/ d iv x (uyoJ -fydk = divx / ( u y o j - f y d k (4.35) 
Vk v Vk w 

The divergence operator with respect to x and the integration 

over the momentum space are independent operations which therefore may 
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be exchanged. The evaluation of the remaining integral is carried out 

by the mean value theorem. 
, _ _* _ , _ _* 

d i v x J ( u y u J - f y d k = d i v x (4-Tt>.y.<uy Uy>) (4.36) 
Vk * " 

Now let us consider the physical significance of the mean value 

of the tensorial product of the group velocities. The elements of 

this product have the dimension of energy divided by a mass. This 

fact motivates us to assign temperatures to the tensor of the group 

velocities by (4.37). 

^ V = ^o1#kb'T (4.37) 

The quantities VL and T denote the effective mass tensor at 

energy minimum and the temperature tensor, respectively. We admit 

that thinking of temperature as a tensorial quantity is a bit 

unfamiliar; but in crystal physics few physical quantities retain 

their simple classical meaning because of the inherently quantum 

mechanical nature of a solid state problem. If the effective mass 

tensor at minimum energy is independent of x (meaning that the band 

structure is the same in the entire crystal), it may be written before 

the divergence operator. If, furthermore, the temperature tensor is a 

scalar matrix (a case strictly true for thermodynamic equilibrium 

only), (4.36) turns out to be the 'diffusion term' of classical 

models. 

4.W3.divx(ir-kb-^
1'T) =• 4-«3.^1.gradx(y-kb-T) (4.38) 

It should be noted that the approxijnation of a scalar carrier 

temperature is a very poor one for high fields; this means that the 

diffusion of so-called hot carriers is uncorrectly described. The 

last integral of the Boltzmann equation may be split up in two 

integrals. The integral containing the equilibrium distribution 

function turns out to be zero for reasons of symmetry. 

f ^v'^hr (fyfW)) -<3k - / C^vy-fjrdk - / C^-iy-fDO-dk (4.39) 
Vk -" Vk -" Vk -*' 

The remaining integral is evaluated by the mean value theorem, 

giving (4.40). 

/ C^ty-fydk" = 4"B3-y.<C1.i^e» (4.40) 
Vk -* -" 

Now let us rewrite the the integral of the Boltzmann equation in 

terms of our evaluated integrals. 
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g^- (Ifcujp)-J*W-L>Fe + MQ gradx(VkbT) = iMy
Xuy> (4.41) 

If we assume that the mean of the effective mass is a constant 

(meaning that the energy bands are strictly parabolic and that all 

valleys (if more than one) are equally populated) and it does, 

therefore, not depend on the distribution function <M> and MQ are the 

same. If furthermore, the effective mass is a scalar matrix, we 

denote it by nv. , The assumptions made above do not hold for hot 

electrons. If we approximate the relaxation time tensor by a scalar 

independent of the distribution function, it may be written outside 

the <> bracket. The relaxation mechanisms are, in a first order 

approximation, dependent on the energy of the carriers, and therefore 

dependent on the distribution function. For low-energy carriers the 

assumption of a constant relaxation time is justified. If we now 

identify the mean value of the group velocity with a macroscopic drift 

velocity v and assume that the external force applied to a particle is 

of merely electrical origin, we end up with two ordinary differential 

equations. 

3 q _ 1 n'V n 

*p(n'Vn) + -yn-E + -ygrad (n-k-T) = = — (4.42) 
o c m m *n 

n n 
9 _ q _ 1 P'̂ p 
fc(p-Vp) - — -P-E + -j-grad (p-k-T) = - -w— (4.43) 

"p "p P 

q denotes the elementary charge. These equations can also be 

regarded as macroscopic force balance equations. A "closed solution" 

of these equations is, unfortunately, not possible. In order to 

obtain an approximate solution we introduce effective carrier 

mobilities |»n and J> . 

<3-*n 

% 

Mp - ! £ (4.45) 

t 
We rewrite (4.42) and (4.43) after multiplication with the 

corresponding average collision times 1^. and charge constant iq, and 

- remembering (4.1) and (4.2) - we end up with: 
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^n _ _ 1 k-T 
Xn-3t + Jn = 5-J»n-n- < E + „"9rad( n*— ) 3 (4'46) 

^ p _ _ 1 k-T 
h-ft + JP = q-^p-P' < E - p-grad{ p - — ) ) (4.47) 

The average collision times L. are very small, usually in the 

order of tenth of picoseconds. Therefore, equations (4.46) and (4.47) 

can be understood as being singularly perturbed. This suggests to 

expand the solution into powsrs of the perturbation parameter which is 

the collision time. 

Jn**n> = S j n i - ^ n ) 1 (4-48) 
i=0 

Jp<V " Zjpl'^p) 1 (4-49) 

i=0 

We have an algebraic equation for the zero order term of the 

current density. 

Jno = q'Jfo-n* ( = + --grad(n-^-)) (4.50) 

Jpo = q-*Vp"( E " p-9rad(P-—>) (4.51) 

These equations are formal approximations of order t_ 

Jn " Jno + 0(Tn) (4.52) 

Jp " Jpo + 0<V (4.53) 

We further assume that the lattice temperature is constant. 

T = const. (4.54) 

Then we can use the substitutions (4.55) and (4.56) which by 

means of physical interpretation are termed the Einstein relations 

Dn = J V — (4-55) 
q 

Dp = i»p-H2 (4.56) 

to define the diffusion constants O - and, finally, we are able to 

write down the current relations in the well known established form as 

sums of a drift and a diffusion component. 
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Jn = q-n-J»n-E + q-Dn-grad n (4.57) 

Jp = q-p-jyE " q-Dp-grad p (4.58) 

In the following we should like to summarize the most important 

assumptions which had to be performed over and above to the ones 

necessary for the validity of the Boltzmann equation to obtain the 

current relations (4.57) and (4.58). 

• All scattering processes have been assumed to be either elastic or 
isotropic in order to justify the use of a relaxation time. 
Therefore, for instance, polar optical phonon scattering which is a 
major scattering mechanism in GaAs has been excluded. 

• The spatial variations of the band structure are neglected. This 
implies a slowly varying impurity concentration over a carrier mean 
free path. 

• Effects of degeneracy have been neglected in the approximation for 
the scattering integral. 

• The spatial variation of the external forces is neglected which 
implies a slowly varying electric field vector. 

• The influence of the Lorentz force is ignored by assuming zero 
magnetic induction. 

• The time and spatial variation of carrier temperature is neglected 
and, furthermore, lattice and carrier temperature are assumed to be 
equal. Therefore, the diffusion of hot carriers is improperly 
described. Several authors have tried to overcome this problem by 
using modified Einstein relations [2], [12], [13], [17], [18], [19], 
[21]. 

• Parabolic energy bands are assumed which is an additional reason why 
degenerate semiconductor materials cannot be treated properly. 
Calculations of the realistic band structure of various 
semiconductors can be found in, e.g., [5]. However, for a 
realistic band structure it can become necessary to use a system of 
Boltzmann equations to describe the carrier distribution instead of 
just one (cf. [23]). _ _ 

• The zero order term of the series expansions of J and J into 
powers of the collision time only has been taken into account. 
Thus, all time dependent mobility phenomena are not included. 

• The semiconductor has been assumed to be infinitely large. In a 
real device the distribution function is changed in a complex, 
highly irregular manner in the vicinity of boundaries, for instance 
contacts [14] and interfaces [7]. It can be expected that the 
drift-diffusion approximation fails within a few carrier mean free 
paths of boundaries. 
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5. The Basic Semiconductor Equations. 

We shall now summarize the results which we have obtained in the 

previous sections in order to be able to write down a set of 

equations, the "basic" semiconductor equations. It is obvious that 

for the sake of transparency and efficiency, one has to perform a 

trade-off between accuracy and complexity of the model. The equations 

we concentrate on are valid for the major number of engineering 

applications, particularly for silicon devices. Certainly, conditions 

do exist for which their validity is not guaranteed, or at least in 

doubt. However, as we tried to express in the previous sections, the 

more sophisticated results in semiconductor physics are too complex to 

give a rigorous, generally applicable and still sufficiently simple 

model for the purpose of device simulation. 

The basic semiconductor equations consist of Poisson's equation 

(5.1), the continuity equations for electrons (5.2) and holes (5.3) 

and the current relations for electrons (5.4) and holes (5.5). 

div grad q i = j r « { n - p - C ) (5.1) 

3n 
div Jn - q-jll = q-R (5.2) 

div Jp + q-J| = -q-R (5.3) 

Jn = q-n-J^-EJ, + q-Dn-grad n (5.4) 

Jp = q-p-JV^p " <3,Dp-9rad p (5-5) 

To almost this level of completeness, these equations were first 

presented by VanRoosbroeck [22]. 

Models for C, the net doping concentration, for R, the net 

generation/recombination, for Jl_, 9 , the carrier mobilities, are 

discussed in the literature. E and E , the effective fields in the 
n p 

current relations are to first order the electric field, however, one 

may use supplementary correction terms to account for, e.g., heavy 

doping. For such mathematical investigations, relatively slight 

perturbations are of only secondary importance. Hence, for most 

applications, accounting for some specific effect is possible by 

properly modeling the parameters in the basic equations. 
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Conclusion . 

We have shown the complete procedure how the basic semiconductor 

equations are derived from the Boltzmann transport equation plus the 

assumptions made. In view of some too restrictive assumptions an 

improvement of the current equations will be a crucial topic. The 

justification of all assumptions made in this derivation must, of 

course, be given by a more basic theory. Monte Carlo methods can be 

expected to serve as an excellent tool for testing classical models 

and new theories as well. 
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