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1. Introduction 

The numerical solution of the equations describing the 
steady-state behaviour of a semiconductor device is still a 
rather difficult problem. One of the difficulties is to find 
a suitable discrete formulation of the problem. Ordinary 
finite difference or finite element methods are not suitable 
and will give rise to non-physical oscillations in the hole 
and electron concentrations. In 1969, Scharfetter and Gummel 
designed a method which does not have this drawback {|2|). 
Since then, their method has been used by many device 
analysts to compute solutions for various semiconductor 
devices. Recently, a new version of the Scharfetter-Gummel 
scheme has been proposed (Ml). In this new method, 
quadrature rules play an important role. The aim of this paper 
is to analyse the influence of these quadrature rules in the 
new Scharfetter-Gummel scheme. 

2. The box scheme 

Consider the continuity equation for holes 

div J = -qR (1) 

where the hole current density is given by 
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J = — £ grad p + qu p grad <j> 
P a P P 

(2) 

Suppose we have a mesh of quadrilaterals which we would like 
to use to discretise equation (1), Then, for each mesh point M, 
we construct a box B around that point (see I1|). 

Figure 1 

Then, instead of solving (1), we can try to solve 

ff div J = // qR 
B B 

Using Stokes' Theorem we can rewrite this as 

/ V f i = / / qR (3) 

where E is the ioctogonal) edge of box B and n is the unit 
outward normal. The discretisation of (3) is described in |1 
the right hand side is approximated by 

q area(B) R(M) (4) 

and the left hand side is approximated by 

(5) 
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where I. is an approximation to 

J .n 
P 

(6) 

Here, the E., i=1, ,8 are the eight sides of the octogon B. 
Thus, we are faced with the problem to find a suitable 
approximation to the current flowing through an edge E.. There 
are two difficulties here; 

(i) find a suitable n-point quadrature rule with weights 
w ,... ,w and abcissae 0 ,..,, 6 and approximate 
(6) by n in 

n k 
I. = Z w. J , 
l , , k p.normal 

k=1 ^ 
(ii) find an expression for J 1 in (7) such that 

the resulting discretisation scheme is stable 

Problem (ii) is discussed in |1| , where a new Scharfetter-
Gummel scheme is proposed. Here, we will concentrate on 
problem (i). 

3. Some simple examples 

We illustrate the influence of quadrature rules on the 
solution of a problem with two examples. The first is a 
condensor, the second example is a diode. Both examples are 
one-dimensional, but we solve them as if they were two-
dimensional. Thus, there should be no variation in the 
y-direction. 

We solve both problems on a very coarse square mesh: 

I 
Oy 

5y 

0 5y 10u 
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The quadrature rules we use are one-point rules of the form 
(compare (7) in section 2} 

I. = J . (6) 
l p,normal 

where 0 is the normalized distance between the midpoint of a 
mesh and the nearest side of the mesh. Some examples: 

m »e=c m 6 = 1 

Example 1: Condensor 

We take the following problem: 

^ - 0 on |Q,10u| 

\|>(0) = 0 , tp{ 10u) = 1 

We solve this problem on the square mesh given in figure 1. 
Below we show the solution of the discrete problem for the 
choices 9 = 0 and 0 = 0.5 .The graphs are marked with numbers 
1, 2 and 3. '11 refers to the solution on the line y = 0, 
'2' to the solution on the line y = 5u, and '3' to the solution 
on the line y = 10y. 

The boundary conditions can be given in several ways. We can 
choose to apply the boundary conditions in all points at the 
left and right side of the mesh, i.e. in the points marked 'X1, 
or we can take a subset of these, marked '0': 

-« 

Case 1 Case 2 
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In figs. 2,3 the solution for case 1 is given, in figs. 4,5 
the graphs for case 2 are displayed. Remark that the solutions 
in figure 4 are different from the solutions in the other three 
figures. This can be explained after some elementary 
calculations, the results of which are shown in Table 1. There 
we give the coefficients in the element stiffness matrix for 
the problem 

div grad \p = 0 

on a square mesh 

for several values of 0, 

0 

0 

1/3 

1/2 

2/3 

1 

1 

1/2 

2/3 

3/4 

5/6 

1 

2 

0 

-1/6 

-1/4 

-1/3 

-1/2 

3 

0 

-1/6 

-1/4 

-1/3 

-1/2 

4 

-1/2 

-1/3 

-1/4 

-1/6 

0 

(finite element) 

(high order fin.diff) 

(finite diff.) 

We see that, for certain choices of 8, we obtain the standard 
finite difference and finite element methods. Furthermore we 
see that we get a strange scheme ('chess board scheme'} for 
0 = 0 , which explains the behaviour of the solution in 
figure 3. 

Example 2: Diode 

We take the following problem on |0 ,10p | 

-ip " = q(p - n + D) 

J ' = -qR 
P 
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J ' = qR n ^ 

J = -q u P $ ' 
P MP VP 

J = -q u n <j> ' n Hn ^n 

with boundary conditions 

V 0 5 (0) = 0, 

<t)p{10y5 = *n( lOy) = 0.1 

and where 4» at the contacts is obtained from the requirement 
of charge neutrality. The doping function is taken to be 

D(x) 

,16 -10 

0 

1016 

for x < 5u 

for x = 5U 

for x > 5P 

Furthermore, we took 

e = 11.7 

u = u = 1000 
p n 

R = 0 

n. = 1.22 10 10 

We solve this problem on the same mesh as we used for example 1 
but we only take case 2. The results of our calculations are 
shown in figures 6-11. We see that the choice 9 = 0.5 is the 
better one in all cases. This can be explained in a way 
similar to that in example 1. 

4. Conclusion 

We have given a brief discussion of the influence of 
quadrature rules in the new Scharfetter-Gummel scheme as 
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introduced in |1|. The two examples in section 3 show that 
one has to be careful in choosing the abcissae for the 
quadrature rules in order to obtain a reasonably accurate 
solution. In some cases a wrong choice for the quadrature 
rule can give non-unique solutions or solutions that do not 
satisfy the discrete maximum principle. 
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Figure 10 Figure 11 


