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1. Introduction 

Boundary metnods have been used for some time 
as an alternative technique in the solution of linear 
potential problems (1). Only the boundaries are 
involved in the initial calculation with a linear system 
and once the values on the boundaries are fully 
evaluated, the solution within the domain may be 
obtained at any point by direct calculation. The 
equations are easily implemented numerically, paying 
due attention to singularities, require less storage and 
can easily be applied to irregular shapes. The 
techniques are placed in context and treated formally in 
Brebbia and Walker (2). A useful introductory 
discussion of methods of dealing with non-linearities 
is also included. 

It is of interest to note that all of the 
representations, finite difference, finite element and 
boundary element are considered to be basically similar. 
This quickly becomes apparent if an attempt is made to 
obtain solutions for a particular problem using each of 
the three methods. It is therefore unlikely that a 
significant improvement could be expected to arise 
directly from the particular method employed. 
Nevertheless it is still worth investigating the 
different methods to see to what extent a particular type 
of problem can be treated more effectively using one 
method rather than another. Important factors could 
include the ease with which a given geometry may be 
represented, the way in which parameters and boundary 
values are to be stored and how the solution method is to 
be implemented. This is particularly important for a 
coupled non-linear equation set such as occurs in the 
solution of the semiconductor equations. 
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Solution methods for two-dimensional 

semiconductor device structures have now reached a stage 
where useful results can be obtained for simple cases. 
While reliable finite-difference programs, such as 
MINIMUS, are still being widely used, much of the recent 
work has concentrated on the application of 
finite-element methods, the equations usually being 
solved separately and the non-linearities taken into 
account through continuation methods with iteration and 
inversion of the Jacobian matrices associated with some 
form of Newton's method. While overall convergence in 
general cannot be guaranteed, particularly when the 
starting values are remote from the solution, it can 
still be expected when voltages are small and the 
geometry simple. The size of the matrices to be 
inverted, especially if the Jacobian is involved, and 
the corresponding computing times needed for an 
acceptable solution require the use of the largest 
available machines. Cost then becomes an important 
factor and may limit practical applications. Extension 
of the same methods to three-dimensional problems would 
also be seen to be expensive and uneconomic. Moreover, 
an increasing number of industrial designers are 
becoming accustomed to using personal, yet powerful, 
work stations. This trend justifies a search for 
formulations and methodologies which may permit the 
development of acceptably-accurate programs running on 
small machines in a reasonable time. 

2. Possible Techniques 

Two techniques in this area are being 
considered in the Electrical and Electronic Engineering 
Department at Queens University Belfast. The first 
involves the use of successive over-relaxation with 
finite elements. The method is not particularly new when 
applied to linear systems but may have some value in the 
simultaneous solution of the coupled non-linear 
semiconductor edquations, especially when starting 
values cannot be estimated accurately. It has been 
demonstrated to work particularly well for initial 
estimates with finite differences and poor starting 
conditions. The second technique is based on boundary 
integration. It is clear that the sparsity of 
information normally required from within the domain no 
longer holds when there are strongly non-linear 
charge/potential relationships contained in the 
equation set. All nodes or elements within the region 
contribute to the solution. However it is possible that 
some computational economy might still be achieved 
through an iterative solution method which requires the 
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inversion of the matrix relating only those variables 
and their normal gradients which exist along the 
boundary. Computation of the coefficients of the matrix 
now, of course, involves the whole domain over which a 
finite-element mesh must be established. 
Approximations are possible and a look-up table may be 
used. 

The method proceeds by obtaining a first 
estimate of the quasi-fermi levels and the potential 
distribution within the domain. Charge and 
recombination can then be calculated and the unknown 
boundary values found from the related equation sets. 
Updated potential distributions can then be obtained. 
As with the linear solution, the correct boundary 
values, once computed, are sufficient to determine the 
hole and electron quasi-fermi levels and the 
electrostatic potential at any point within the domain. 
In practice, the interaction between charge and 
potential over the region prevents an explicit solution 
being obtained and iteration is again required. 

Initial investigations indicate that the above 
problems may be overcome and useful solutions obtained. 
A major factor is the linearity of the original equation 
set. If the equations were completely linear, the answer 
could be obtained directly without recourse to 
iteration. Strongly non-linear terms may affect 
stability or make convergence slow or simply prevent a 
solution being obtained. A useful formulation has been 
developed by Yamaguchi (3). These equations contain 
more linear terms than the conventional versions. The 
linear terms give rise to the matrix coefficients and the 
non-linear terms, for the moment assumed constant, 
appear on the right-hand side. The more linear the 
equations, the more can be incorporated into the 
coefficient matrix. With the conventional version of 
the equations, there is very little left among the 
linear terms to contribute to the left-hand side of the 
equation set and a solution would appear to be virtually 
impossible. 

3. Solution Hethod 

Once a first estimate of the boundary values 
and the normal gradients have been obtained they can, in 
turn, be assumed to be constant. It then becomes 
necessary to calculate the potential distributions 
within the domain. The method is to use the values of 
charge and recombination from the previous iteration. 
These are assumed to exist at the centres of the 
triangular elements. They become singular sources. 
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along with the boundary values, with analytic potential 
solutions associated with each. The resultant 
contributions to the nodal potentials can then be 
computed or, to save time, can be stored in a triangular 
look-up table with zero entries where the contribution 
is considered to be small. No singularity problems arise 
since no boundary values are calculated and the element 
nodes cannot coincide with the centres of the elements. 
Using standard finite-element procedures, the charge 
and recombination in each element can be updated. These 
in turn can now be assumed to be constant and used in the 
boundary-element solution of the associated 
Poisson-like equations. The procedure is then repeated. 

So far segments of the program have been tested 
and it is anticipated that some early results will be 
available shortly. 
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