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A CHARACTERISTICS BOX SCHEME FOR THE SINGULARLY PERTURBED 
CONTINUITY EQUATION 

S. Polak, W. Schilders 

Abstract. 

A new scheme is introduced for discretising the continuity 
equation. The scheme approximately satisfies the requirement 
that the reduced difference equation is a backward Euler inte­
gration for the characteristics problem of the reduced con­
tinuity equation. 

1. INTRODUCTION 

The connection between singular perturbation theory and 
the semiconductor equations has already been indicated in 
[ID. However only the case of the Poisson equation was 
considered. Although this in our opinion is correct, the 
character of the continuity equation is even more impor­
tant in this respect. The amazing fact is that the 1-D 
discretisation derived by Scharfetter-Gummel is essen­
tially the same as the scheme derived by Il'yin C2 3. The 
reasoning in both cases is completely different but only 
valid for one-dimensional problems. This reasoning is not 
as such valid in two dimensions. Basically this is owing 
to the fact that the 1-D reasoning depends on the exis­
tence of two functions spanning the solution space of a 
one dimensional case. In two dimensions we need an infi­
nity of basic solutions. 

However in this paper we present a new discretisation 
using the one dimensional reasoning in a correct way. 
The basic idea is the following: The dominant part in the 
continuity equation is first order. A first order equation 
may be considered as a set of ordinary differential equa­
tions along the characteristics. These should be integra­
ted in a stable way. The characteristics point of view 
makes it possible to use the one dimensional reasoning 
again. 
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In section two we briefly discuss singularly perturbed 
problems, in section three we consider the continuity 
equation from this point of view, in section four the 2-D 
scheme is derived and in section five this is applied to 
the continuity equation. In C33, an accompanying paper, 
some further aspects are treated. 

2. SINGULARLY PERTURBED 3-D PROBLEMS 

In this section we briefly discuss singularly perturbed 
problems. A thorough treatment can be found in C4] and 
C53. 
Consider the equation 

y''+ay'=r (2.1) 

on Co, 1D- For very large 'a' this equation closely resem­
bles 

ay'=r (2.2) 

However for (2.1) we have two boundary conditions whereas 
(2.2) is an initial value problem. So for large 'a' it 
seems that we have one boundary condition too many. This 
is found back in a transition layer in the solution. It is 
as if the second boundary condition is discovered in a 
short interval. This can also be understood by considering 
the solution in the form 

a+3e~ax+f(x) 

where f(x) is a solution of the inhomogeneous problem not 
satisfying the boundary conditions. The e~axpO only in a 
very short interval. 
The difference scheme used for (2.1) must be adapted to 
the fact that we are almost solving ay'=r for large 'a'. 
If for instance we use 

2 
(5h+ah62h)y=h

2r 

for (2.1) (for notation see e.g. C6D). We find 

s$2hy=h2r 

for (2.2). It is obvious that this is not a stable ODE 
integrator, which we would wish. This leads to the 
following 
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requirement (A}: the difference scheme for (2.1) must re­
duce to a stable scheme for (2.2) of a — > °° . In [2] a 
scheme is derived which has this property. To understand 
this scheme we may reason as follows. The operator 5 2h 
should be replaced by an operator resulting in backward 
Euler for (2.2). However depending on the sign of 'a* this 
should by A or V . W e would also like to have <->2h f°r 

small 'a'. 
A convex combination 

D(a)=.5((1+s(a))A+(1-s(a))v) 

can be used for this purpose. We still have to find a 
suitable function s(a). It has also been observed that the 
transition layer may be understood via the behaviour of 
the solution e~ax of the homogeneous problem. So by sub­
stituting e - a x in the difference scheme 

(62+ahD(a))y=0 (2.3) 

we find the function s(a). 
2 

Realising that A+7=62h an|3 A-V = $n we m a v rewrite this as 

6h(y5h+-5ahu)y=0 (2.4) 

with Y=(1+ahs(a))=.5ah cotgh(.5ah). And indeed this satis­
fies the requirements. 
The important observation is that we have used the fact 
that the homogeneous scheme has two basic solutions, 1 and 
e-ax in an essential way. This can not be extended to two 
dimensions. 

3. THE 1-D CONTINUITY EQUATION 

The continuity equation for p may be written as 

div grad p+grad\|j .grad p=R-p div grad\Jj=R (3.1) 

In one dimension this gives 

Pxx+4xP=R <3'2) 

an equation of the same type as (2.1), For \|JX large, as 
may be the case in a depletion layer, this equation is 
singularly perturbed. 
It can easily be checked that any other choice of 
variables gives exactly the same first order term in the 
equation. So (2.4) leads to 
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&n( y&n+.5i)xh\l)p=-R(p,ty) (3.3) 

It should be noted that the straight forward translation 
of (2.4) in (2.5) used the fact that 'a' is constant. For 
non constant 'a' a slightly different derivation is nee­
ded. 

2-D SINGULARLY PERTURBED PROBLEMS 

Consider 
div grad y+E.grad y=r (4.1) 

in 2D, If E is very large this equation will resemble 

E.grad y=r (4.2) 

This equation may be considered as defined by a set of 
ODE's along the characteristics (see e.g. [7]). This 
allows us to reintroduce a one dimensional reasoning. 
Then we replace requirement (A) by 

requirement (B); the discrete scheme for (4.1) must reduce 
to a stable scheme for the ordinary differential equations 
along the characteristics defined by (4.2) if |E| —» «> 

THE 2-D CONTINUITY EQUATION 

In this section we give a scheme for the 2-D continuity 
equation which satisfies requirement (B) for each mesh if 
the characteristics are straight lines. Of course in 
realistic problems characteristics are not straight 
lines. However in that case we cause an approximation er­
ror which may be lowered by changing interpolations. It 
should be noted that neither the upwind FEM schemes nor 
the usual 2D Scharfetter-Gummel satisfy this requirement. 

Suppose we have a quadrilateral mesh. Let us consider four 
neighbouring meshes as shown in fig 1. 
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We construct a box around the midpoint (xg,yn) by using 
the connections of the midpoints of mesh segments. This 
gives the octogon G=abcdefgh with boundaryP . Then we use 
a Green's theorem as usual in box schemes giving 

/r,grad p+p.grad ^.dn=/gR 

For any quadrature we now must establish 
(grad p+p gradi|J).n in the quadrature points. We use a 
local coordinate system (x*,y') in the quadrature points 
with one axis along grad ty , i.e. tangential to the 
characteristics. For one box this is shown in fig 2. 

grad \jj 

This gives four points A, B, C and D as cross-section for 
the local coordinate system and the meshlines. In these 
local coordinates the equation has the form 

/p(px. +^x. p+py,).n=/Q R 

So it is sufficient to apply the one dimensional reasoning 
only for pxi+^xi p only in this case. However, then we need 
values in the points A, B, C and D. For this we express 
those values in terms of the nodal unknown via linear 
interpolation. The effect of this choice on the order of 
the approximation still has to be investigated. However it 
is obvious that a variety of choices for the quadrature 
and interpolation is now possible. 

If 4̂ x i-s very large this scheme is, except for the errors 
introduced by the linear interpolation of the A, B, C and 
D values and the error introduced by the curvature of the 
characteristics, backward Euler for the ordinary diffe­
rential equations involved. 
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CONCLUDING REMARKS 

We have implemented this scheme in our program package 
CURRY and have used it to investigate several realistic 
devices. A simple one dimensional example suffices to show 
the practical importance of the scheme. Consider the two 
meshes given in fig 3. 

e t c . 

V e t c . 

fig. 3 

They were used to discretise a one dimensional diode pro­
blem [8]. Using the classical Scharfetter-Gummel approach 
gave an essential discrepancy between the solutions. This 
discrepancy increased when the difference between the 
meshes was increased. Using the new scheme gave exactly 
the same result, independant of the mesh used. 
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