
298 

QUADRILATERAL ELEMENTS AND THE SCHARFETTER-GUMMEL METHOD 

M, S, MOCK 

Department of Applied Mathematics, The Hebrew University, 
Jerusalem, Israel. 

ABSTRACT 

We consider necessary conditions for convergence of the 
Scharfetter-Gummel method, as applied to the continuity equations 
associated with stationary semiconductor models. A previously 
determined sufficient condition on the effective widths or cross-
sections of the conducting paths appears also to be necessary. 
However, it cannot be satisfied for all choices of underlying 
finite elements. For quadrilateral elements, for example, this 
method can be consistently applied apparently only in the special 
case that the four vertices lie on a circle. 

1. INTRODUCTION 

The discretization of the two continuity equations for 
stationary, numerical semiconductor device models is complicated 
by the fact that none of the obvious choices for the dependent 
variable (i.e. the carrier densities, the quasi-Fermi potentials 
or their exponentials) can generally be resolved on an affordable 
mesh. This phenomenon undermines the error estimates for both 
classical finite difference and projection methods, and indeed 
the results obtained by using such methods for these equations 
are often disappointing. 

This difficulty is commonly overcome by using a special 
method, introduced in the context of numerical semiconductor 
models by D. L. Scharfetter and H. K. Gummel [5], They observed 
that if a flux density f = -a — is constant between two mesh 

QX 

points x and x , and if the function log a(x) is approximated 
as linear in this interval (a(.) is assumed uniformly positive), 
then the flux is given by 

log(a_/a ) u - u 
f ( x ) = _ _ _ _ _ x _ x~ , X_<X<X+) a+ * a_, (1.1) 

a - a + 
+ 
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in which a , a , u , u are the point-values of the functions a, 
u at X , X , and with the continuous extension to the case a = 

•4- — + 

a . In particular, the divided difference in (1.1) does not 
have to approximate the derivative of u. 

Little additional justifications for this method is needed 
for one-dimensional models. In higher dimensions, however, we 
wish to approximate an equation of the form V,(aVu) = 0 by 
requiring the vanishing of a weighted sum of flux values obtained 
from (1.1) into each interior mesh point. (Generation-recombin
ation of mobile carriers will be ignored in the present discus
sion.) Geometrically, we can consider this method as an approx
imation of a continuous medium by a set of one-dimensional 
"pipes", in the spirit of an "equivalence method" in structural 
mechanics [1]. However, the choice of consistent weights for 
these pipes - their effective widths or cross-sections - is not 
obvious in general. Indeed, it is not obvious that a consistent 
choice exists. For example in two dimensions, we know how to 
choose the path "widths" for rectangular or triangular meshes or 
domains divided into rectangular and/or triangular elements. 
As against this, there is no consistent choice of path "widths" 
for the skew-rectangular mesh shown in Fig. 1. 

Fig. 1 Skew-rectangular mesh 

To see this, it suffices to consider the special case a i l , so 
we are trying to approximate Au = 0. But this is impossible 
using a five-point difference formula on such a mesh; in the 
resulting Taylor expansion there are six coefficients to be con
trolled, those of u,u ,u ,u ,u ,u , and we have only five 

X V XX XV VV 

point-values available. Approximation of to = 0 is certainly 
possible on such a mesh, but more than five points are needed in 
the resulting stencil. 

In [2,3], sufficient conditions are obtained for the accur
acy of the Scharfetter-Gummel procedure. These conditions 
appear to place severe restrictions on the types of mesh or 
elements that can be used with this procedure. Here we consider 
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the question of necessary conditions, in an attempt to find 
additional types of elements which can be used -with this method. 
Although we find some such elements, it is questionable whether 
they have any practical value in terms of actual computations. 
Our main result is that the sufficient condition given in [3] 
appears to be necessary in general. 

2. THE SCHARFETTER-GUMMEL METHOD IN HIGHER DIMENSIONS 

As a model problem for this discussion, we consider the 
boundary-value problem 

V.(a V u) = 0, Xefi; 

u(x) specified, XeSfi , v.Vu(x) = 0, Xe3ft , 

(2.1) 

(2.2) 

where 3fl = 3fi {J 3fl is the boundary of the region fl, which is 
an open simply connected bounded set in ^ . In (2.1 - 2.2), the 
function a(x) is given, uniformly positive in !J, v is the out
ward normal vector in 3ft, 

The discretization of this problem may be described as 
follows 

1, •> 

the region Q is divided into finite elements w i = 

N. In the two dimensions, the boundary segments of 
these elements, assumed to be straight line segments, form a 

N. E'. 
In three dimensions, the set of edges e , k = 1, 

edges e are the intersections of the faces comprising the 
boundary of each w . 

Let v denote a unit vector in the direction of the edge 
e , 1 the length of e and y , z the end points, oriented so 
that y points from y towards z . These points y , z are of 
course the mesh points; those mesh points in the interior of 
Q or on the boundary segments 3n will necessarily be end points 

of more than one 
in Pig. 2. 

'N 
edge. A simple example of such a mesh is shown 

Fig. 2 Example of triangular mesh 
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We next denote by X a space of piecewise constant, vector-

valued functions defined on the edges e . Thus for geX, we have 

g| = gk\. k = 1 NE, (2.3) 
ek 

for some constants g . We also define an inner product for L 
vector-values functions defined on the edges, by the relation 

<p,q> = £<Jk J* (vk.p(x)> (Vk.q(x))dx (2.4) 

k 6k 

In (2.4), a is an effective width, in two dimensions, or cross-
section, in three dimensions, assigned to the edge e . In general, 
the choice of the o is not obvious, and as we shall see is an 
essential source of difficulty for certain choices of elements. 

Let A denote the L projection of vector valued functions 
into X, i.e. 

<p,q> = <A(p),q> for all qcX, with A(p)eX. (2.5) 

As a special case of (2.5), we note that for any smooth scalar 
function <j>, we have 

* ( V " *(yk) 

A(V<j>)| = v - — * (2.6) 

\ k 

With this notation, the Scharfetter-Gummel procedure in higher 
dimensions is readily described. We rewrite (2.1) in the form 

f = - aVu (2.7) 

V.f = 0 (2.8) 

and then write the weak form of (2.8), using the boundary con
dition (2.2) , 

(f ,Vc}>) = 0 (2.9) 

for all smooth $ vanishing on 3fi . In (2.9), (,) is the 
ordinary L inner product on fi. 

In discrete form, we first find FeX, our approximation to 
f, by applying (1.1) to each of the edges e , 

Fl = F v, (2.10) 
1 k k 
e
k 

log(a(yk)/a(zk))
 u<z

k> ~ u(-yyi'
> 

= - \ ——Ti——ri r ' a<V f a ( V ; 

(a(zfc) - a(yk) k 

u(zk) - u(yk) 

F| =-v a(yk) j- ' a(zk)=a(yk). 
\ k 
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In (2.10), u(.) is a mesh function, our "approximation" to u on 
the mesh points, and satisfying the boundary conditions for u 
on 3Q 

The discrete form of (2,9) is given by 

<F,V<(>> = 0 (2,11) 

for all smooth <j> vanishing on 3fln; the discrete Scharfetter-
Gummel system is obtained simply by combining (2.10) and (2,11). 
To see this, we first note, using (2,5) and (2.6), that the 
number of independent equations obtained from (2.11) is N , the 
number of interior mesh points plus the number of mesh points 
on the insulating boundary segments 8fi„. Choosing 4> in (2.11) 
to be equal to unity at one such mesh point and zero at all 
other mesh points, the usual form of the Scharfetter-Gummel 
stencil is recovered. 

The unknowns In the system generated by (2.10), (2.11) may 
be taken or the point-values of u at the interior mesh points 
and mesh points on 3fi„- There are thus also N unknowns, and 
the existence and uniqueness of the discrete solution is 
established in [2,3]. 

3. COMPATIBILITY OF INNER PRODUCTS 

The replacement of the continuous inner product (,) in 
(2.9) by the partially discrete inner product <,> in (2.11) may 
be viewed as the essential additional approximation required to 
extend the Scharfetter-Gummel method to higher dimensions. We 
note that in one dimension, the two inner products coincide, so 
that no such additional approximation is necessary. We also 
note that the essential step in the convergence proof of [3] is 
a comparison of these two inner products. 

From (2.4), it is clear that the suitability of the inner 
product <,> depends sensitively on the choice of the o . With
out loss of generality, we assume at this point that tne 0,_ are 
obtained from a relation of the form k 

au = 7" l <V v, (3-1) 

k 1, . ki i 
k i 

in which V, is the area or volume of the element u , the sum is 
over all such elements, and the a, . are dimensionless numbers 

k i 
as yet undetermined. We wish to interpret a V,/l, as the 
contribution of the element u). to the cross-section a . Thus 
we set a = 0 if the edge e is not part of the boundary of 
03 . In (3.1) and below, we adopt the convention that sums on i 
are over the finite elements a) and sums on k are over the 
edges e , 

k 

Using (2.5), (2.6), we obtain 
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<F,V<|» = <F,A(V<|))> 

+ < V - 4><yk> 

= 5W k r ( 3 - 2 > 
k k 

* < z i > - *<y f c > 
= Z V I a . .F . — ~ — 

• i , k i k 1 
l k k 

u s i n g ( 3 . 1 ) . In ( 3 . 2 ) , we i n t r o d u c e t h e a v e r a g e of V§ ove r t h e 
e lement as. , 

n\ = 
u i 

X 

v 
1 

/ Vcj>(x)dx; 

I 

(3 .3) 

for <|> a smooth function, and assuming that the elements to are 
all of diameter 0(h), we have immediately 

d>(z ) - <|.<y ) _ 
— — = V ?(j)| +0(h), (3.4) 

•^i k 

k u 

using the fact that the edge e is part of the boundary of as 
(otherwise a = 0). We also introduce the vector valued 
function F, piecewise constant in fl, constant within each element 
as with value given by 

F| =Ea k iF kV k. (3.5) 
as. k 
I 

Then ( 3 , 2 ) becomes 

<F,V<j>> = S V.Ea, .F, V, .V? | + 0 ( h ) 
. i , k i k k ' 
i k as, 

I 

= I V.Fl . ? ? ! + 0 ( h ) ( 3 . 6 ) 
i as, as. 

i I 

= (F,vo» + 0 ( h ) . 

From (3.6) and (2.11), we see that the function F satisfies V.F 
= 0(h) weakly; we thus regard F as our approximation to the 
flux f. Indeed, for the a properly chosen, it is shown in 
[4] that F approximates f to 0(h) in L . 

Substituting (2.10) in (3.5), we obtain an expression for 
F, namely 

log(a(y, )/a(z )) 
k k a(y )^a(z ) 

-1 -1 ' 
a(zfc) -a(y"k) 

Fl = "Sa,.^,.! ^ '^i\ (3.7) 
as. 

a(yk), a(yfc) = a(zfc) 

/u(zk)-u(y )\j 

). k » k I 
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For the overall method to be consistent, we need (3.7) to be a 
consistent approximation of (2.7). In the present context, it 
suffices to consider the special case a = 1 in (3.7). In this 
case, it is clear that we are effectively approximating the 
gradient Vu by a piecewise constant vector-valued function D, 
whose value in the element co, is given by 

u(z ) - u(yjS 
Di = EakiVk 1 ' i - L ....H B. <3-8> 

k k 
As the solution of (2,1), (2.2), we know that ueH'(fi); however 
some of the divided differences in (3.7) or (3.8) may be large, 
of order 0(h) ). We want the function D to approximate Vu 
weakly even in this case. To this end, we identify D. with Vu|, 
the average of Vu in u defined analogously with (3.3). Then u>, 
for any smooth vector-valued function 6 vanishing on the 
boundary 3fl, we have 

(D, VX9) = IV,D, VxfTI 

= EV. vu vxe 
i (0. 03 , 

l I 

= I f Vu.VX6~| dx (3.9) 
i ^ U l 

= Z f Vu.VXB dx + 0(h) 

i U i 

= 0(h) 

Thus we wish to choose the cc . so that 

—, U (V " U^V 
7u| = E a k l V k j S _ ' i = l, ...,N E (3.10) 
( O k k 

for some H interpolation of the point-values of u at the mesh 
points into a function of Xefi. This apparently necessary con
dition on the a is the same as the sufficient condition 
obtained in [3]. 

4. QUADRILATERAL ELEMENTS 

Here we consider the types of elements to for which the 
condition (3.10) can be satisfied. As in [3], we let Y denote 
the function space in which the interpolation of the mesh point-
values of u lies. It is natural, of course, to choose Y to be 
a piecewise polynomial space on the elements <o . Thus for tri
angles (o , Y may be taken as piecewise linear; the value of 
a VJ/1I,' t h e contribution of u, to o , is the perpendicular 
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distance from e, to the centre of the circumscribed circle, 
measured positively in the direction of entering the triangle 
from e . For rectangles in two dimensions, we can take Y a 
space of bilinear functions and obtain a = i for all i,k. 
For other quadrilaterals, however, this choice of Y is inappro
priate, as in general such functions will not be continuous on 
the edges. An alternative suggests itself, based on the idea 
of compound finite elements; that is to partition a quadri
lateral element to into two triangles, as shown in Fig. 3, and 
interpolate the given point-values of u as linear within each 
triangle. 

Fig. 3 Partitioning of a quadrilateral element u 
into triangles 0^,6, 

1 £t 

We number the sides of m and assign directions to the v 
as shown in Fig. 3. There are four a's to be determined, which 
we call a (corresponding to edge e.. and triangle Y 1 ) , a 9 

a and a' . We can, of course, compute these by the standard 
method, considering each triangle y , y separately. However, 
in so doing we will obtain two additional a's corresponding to 
the created segment QS, which is part of the boundary of each 
of the triangles. 

We have, however, the following theorem on when condition 
(3.10) can be satisfied for quadrilateral elements by this 
method. 

Theorem: The following three statements are equivalent: 

(i) Condition (3,10) can be satisfied for quadrilateral 
elements with this choice of the space Y (i.e. u inter
polated as linear within each triangle of partitioned 
quadrilateral). 

(ii) If the a's are computed by the standard method (described 
above or in [2] or [3]) for each triangle Y 1, Y9 separ
ately, the "Gummel-Scharfetter width" of the created 
edge QS will be equal to zero, i.e. 

% = ( a
q s , l

V l + a Q S , 2 V 2 ) / d ( Q ' S ) = 0 <4-X> 
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where V , V are the areas of Y1> Y9 respectively and 
d(Q,S) is the distance from Q to S. 

(iii) The vertices of the quadrilateral lie on a circle. 

Several comments precede the proof. We note that this 
argument applies to elements in two dimensions with any number 
of sides, not just quadrilaterals. However, the computational 
value of such elements for problems of this type appears 
extremely limited. 

In the case that (4.1) is satisfied, application of the 
Scharfetter-Gummel procedure to the quadrilateral u results in 
the same discrete equations as would be obtained by application 
to the pair of triangles y , y . Thus from [2] or [3] we see 
that this is a sufficient condition for convergence of the 
method, and not only for satisfying the condition (3.10). 

One may conjecture that this theorem generalizes immediately 
to higher dimensions, e.g. that the Scharfetter-Gummel method 
can be applied to a solid element in three dimensions provided 
that all of its vertices lie on a sphere. We have no proof of 
this. It is interesting to note, however, that this condition 
is indeed satisfied for rectangles, triangular prisms, and 
tetrahedra, the three types of elements that we know can be used 
with this method [3]. 

Proof of theorem: Statements (ii) and (iii) are clearly both 
equivalent to the statement that the centre of the circumscribed 
circle of Y-. > is the same point as the centre of the circum
scribed circle for Y 0• 

In this case we first compute all the a's by the procedure 
Then (3.10) holds for for triangles, for y and y separately 

each of the triangles y and y , i.e. 

Vu\ = a 1,1 
u(Q)-u(P) 

1, v, + a 
i QS, 

u(S)-u(Q) 
d(Q,S) 4,1 

u(P)-u(S) 

V 
(4.2) 

Vu 
2,2 

u(R)-u(Q) 
v2 + a 3,2 

u(S)-u(R) 
V3 + aQS,2 

u(S)-u(Q) 

{ d(Q,S) 
a. 
V. (4.3) 

Thus for the whole element, we have, using (4.1) 
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(4.4) 

V a 
1 1,1 

V ! + V 2 

u(Q)-u(P) 
1, Vl + 

V a 
14,1 

V l + V 2 

u(P)-u(S) 

V a 
2 2,2 
V + V 
1 2 

u(R)-u(Q) 
V2 + 

V a 
2 3,2 

Vl + V2 

u(S)-u(R) K 
which shows that (3.10) is satisfied, if each of the a is 
replaced by the corresponding expression a V /(V + v^), as 
appearing in (4.4). We note that this modification of the a 
is just such that the a , obtained from (3.1), are the same 
for the quadrilateral element as for the union of the two tri
angles. 

Thus it suffices to show that (i) implies (ii); of course, 

this is the case of primary interest. 
(3.10) applied to some special cases, 
case (u(P) = 1, u(Q) = u(R) = u(S) = 0, 
Y 2' and is some linear function in y 
here, (3.10) reduces to 

V. 
?u 

Vl + V2 

u(P)-u(S) 

Vu 
'1,1 

1" 

In this case, we consider 
We first consider the 

In this case u B 0 in 
Since u(Q) = u(S) = 0 

u(Q)-u(P) 
1, + a 4,1 

(4.5) 

Since (4.5) is a vector equation, it gives two independent 
equations (v and v are assumed not parallel, of course) in 
the two unknowns a and a , which are thus uniquely deter
mined. But we know'one solution of (4.5), that is to ignore 
y , and to find the a , a so that (3.10) holds on Y.,, and 
finally multiplying these values by V (V.+V ) to compensate for 
the additional area of y . By uniqueness this is the solution 
of (4.5). 

Applying the same argument to r„, i.e. with u(P) = u(Q) = 
u(S) = 0, u(R) = 1, we find that the values of a and a 
are those that would be obtained for the triangle'Y9 alone,' 
multiplied by V /(V +V ). Thus we see that the a correspond
ing to the sides of w have to be the values obtained previously, 
but this is still not sufficient to show that (4.1) is satisfied. 

Let ot and a 
QS 1 OS 1 

ering the traingles f,!' 

be the values of a obtained by consid-
We consider the case 

(in this case only three of the 
y separately, 

where u is linear on all of us 
four vertex values are independent). With the other a's deter
mined as above, we have in this case 
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Vu\ = a 
1,1 

u(Q)-u(P) 
1 2,2 

u(R)-u(Q) 
1 V2 + a3,2 

u(S)-u(R) 
V3 + a4,l 

u(P)-u(S) 

1 4 I 4 
(4.6) 

Vu = a 
1,1 

Vl + V2 u(Q)-u(P) 
Vl + "4,1 

Vl + V2 u(P)-u(S) 

1 4 J ̂  

+ a QS,1 
u(S)-u(Q)j £ 
I d(Q,S) 

(4.7) 

Vu = a 
2,2 

Vl + V2 u(R)-u(Q) 
V2 + a3,2 

Vl + V2 u(S)-u(R) 
1„ 

+ a. 
u(S)-u(Q) 

QS,2t d(Q,S) J 

holding simultaneously, with Vu\ = Vu| = 7u| . Choosing u 

(4.8) 

Ui ?l 
such that u(s) ? u(Q), we note that 

Vu 
( V i 

(0± { 1 2 
Vu| + 

Vl + V2 
Vu (4.9) 

substituting (4.7) and (4.8) into (4.9) and comparing with (4.6), 
we obtain (4.1) immediately. This completes the proof. 
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