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ABSTRACT 

The calculation of design sensitivities form the central 
operation in many optimisation problems. When the behaviour 
of the system is nonlinear it becomes essential to development 
cost effective algorithms to compute these derivatives. This 
is particularly important when applying such procedures to the 
design of semiconductors due to the highly nonlinear behaviour 
exhibited. A technique is developed for calculating sensitiv­
ities through operating on the converged solution of a set of 
equations which have been solved by the finite element method. 
Comparisons are made between numerical results and known analyt­
ical solutions for quasi-harmonic applications. Applications 
to the design of off-state p-n junctions are also described. 

1. INTRODUCTION 

Semiconductor design in many cases is based on the usual 
engineering approach that if a satisfactory or otherwise reason­
able solution has been found then the design stage can be term­
inated. During the last few years there has been considerable 
research activity in the numerical solution of the equations 
governing potential distributions in semiconductor devices [1] 
[2] and this has lead to the accurate solution of device response. 
With such powerful numerical solutions available it becomes 
immediately apparent that device response can be examined in 
depth at the design stage and furthermore the possibility of 
applying optimisation techniques can be explored. For instance 
device configurations, material properties and terminal contact 
positions could be considered as design parameters. The opti­
misation problem could then be posed as find the set of parameters 
which minimise some particular device response within the limits 
of the constraints placed on the design. 
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When mathematical optimisation techniques are applied to 

such problems it becomes inevitable that derivatives or sens­
itivities of the device response with respect to design variables 
are required in order to describe the objective and constraint 
functions. The solution of the equations governing device res­
ponse is a time consuming and hence costly process and sub­
sequently the calculation of design derivatives will form a 
major part of the total solution process. 

This situation is further compounded due to the nonlinear 
behaviour of device response thus it becomes imperative that 
computationally efficient techniques are adopted in order that 
solution times can be kept within reasonable limits. 

The purpose of this paper is to investigate the efficient 
calculation of design derivatives for nonlinear continuum problems 
and also to present a technique whereby these may be applied 
in the optimal design of semi-conductor devices. Sensitivity 
analysis is discussed in the context of nonlinear applications 
and a solution scheme for design derivative calculation is 
presented. Examples are given for the calculation of design 
derivatives for diffusivity problems (quasi-harmonic equations) 
and these are compared with known analytical solutions. 

Finally it is proposed to use this method of modelling 
in the solution of device design and the possibility of its 
application in the optimal design of bevelled and etched p-n 
junctions are described. 

2, OPTIMISATION CONCEPTS OF OFF-STATE SEMICONDUCTORS 

Consider the two-dimensional Poisson's equation (1) which 
governs the potential distribution across a p-n junction under 
reverse-bias for off-state conditions 

j&fjfc J f l P0l>,x,y) 
3x2 3y2 " k,e K } 

Applying the finite element method to approximate the potential 
distribution across the device and adopting the Galerkin weighted 
residual approach [3] the equations can be written in matrix 
form as 

[C]{IJJ} = {Q(<jO} (2) 

where [C] is the constant capacitance matrix (ijj) is the potential 
vector and {Q(IJJ)} is the highly nonlinear charge vector. 

The correct termination of high-voltage power devices is 
such that it is imperative to obtain the lowest possible peak 
electric field c at the device edge. For instance if the 
device termination is poorly designed that it is possible for 
breakdown voltages of less than 50% of the ideal abrupt parallel 
plane junction to occur. This would subsequently cause an 
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undesirable increase in the device on resistance by as much 
as a factor of five. High voltage termination techniques are 
reviewed by Baliga [4] and suggest that doping density distri­
bution and geometric configurations are the most important design 
variables for which an optimal solution could be sought to mini­
mise the maximum electric field e 

max 
The optimisation problem can be stated in discretised form 

Min z(x ) = Min (max e) 
n (xn) i (3) 

subject to g (x ) < 0 
r n -

where x is the set of design variables, i is the discrete set 
of sampling points and e is the electric field. In such problems 
the functions z(x ) and g (x ) are usually implicit functions 
which are dependent on the nodal coordinates or element bound­
aries which are described by x . Many investigators [5][6] 
seeking the solution to equation (3) have resorted to sequential 
programming and furthermore have approximated the objective 
and constraint functions by applying first order Taylor series 
as follows 

k r k r3zk 1 
z(x ) s z(x ) + } (x -x ) -r— (x ) (4) 

n n '_ j j 3̂x n j j=l 
and similarly 

5 v r5 
gq(Xn> £ VXn> + J. (XrXJ} jxT < XnV * = 1' r ( 5 ) 

J •*• J 

The unknown terms in these equations are the so-called 
design sensitivities or design derivatives — and -r̂ - and these 
must be determined such that equations (4) and (5) can be des­
cribed explicitly. 

If the finite element method is used in the analysis phase 
it becomes mandatory that accurate and efficient techniques are 
adopted for the calculation of these sensitivities otherwise 
modelling of equations (4) and (5) can be both time consuming 
and furthermore inaccurate. The calculation of design sensit­
ivities has generally been applied to systems which exhibit 
only linear behaviour. If semi-conductor devices are to be 
considered then the governing equations are nonlinear even for 
simple off-state devices. Thus it is the purpose of this paper 
to develop and test the process of calculating design sensit­
ivities such that accurate mathematical models can be generated 
for systems which exhibit some form of nonlinearity. 

3. SENSITIVITY DERIVATIVES IN NONLINEAR PROBLEMS 

Consider firstly the usual stiffness formulation which 
produces a system of equations 
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IC]{^} - {Q} = 0 (6) 

If equation (6) is linear then the sensitivities can be found 
by differentiating this expression and upon rearranging yields 
the well known force derivative form of 

{§) - • « - ' ;* - ^ < • , ; 
Computationally equation (7) is equivalent to solving equation 

(6) with multiple right hand sides which can be undertaken at 
a considerable saving over the usual n+1 analyses. This technique 
will now be extended for the treatment of nonlinear problems. 
Many nonlinear problems such as diffusion and electrostatics 
can be described by the quasi-harmonic equation 

|_ k M + |_ k ML + Q = o (8) 
3x x 3x 3y y 3y * v ' 

Nonlinearities often arise in such equations due to the 
physical dependence of k and k on the unknowns <jj. Euqation 
(8) can be readily solved by the finite element method in which 
the nonlinear dependency [C(ip)] is treated by applying iterative 
techniques as described by Lyness et al [7], Rewriting equation 
(8) in matrix form and assuming that [C] is dependent $i we have 

[CWlW - {Q} = 0 (9) 

For some initialising value (IJJ°) equation (9) is generally not 
satisfied and an iterative process is implemented. If this 
process is convergent then the equation is said to be satisfied 
when the error is less than some preassigned index e. If we 
consider that for some problem a solution has been found for 
some relatively small error e then equation (9) can be considered 
to be balanced or that the equality holds. This implies that 
we can operate on this equation in a similar manner to that 
of equation (7), Thus on differentiating equation (9) and re­
arranging we have 

_3£ 
3x 

-1 30 8 [ C (*n-l ) ] 

-'c<Vi>] [ £ — ^ - { V ] (io) 

where p denotes the number of iterations required to achieve 
convergence of the original set of equations to within some 
preassigned error index e. 

On inspection of equation (10) it can be seen that some 
error has been introduced due to the iterative nature of the 
solution of the initial set of equations (9). In fact the 
stiffness terms [C(IJJ)] and a

 a r e evaluated at the p-lth 
iteration while the variable ($* is evaluated using the updated 
stiffness term [C(IJJ ) ] at the converged iteration p. This prob­
lem can however be dealt with by recalculating the stiffness 
and stiffness derivative terms using the converged values of 
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''ijj ). This is equivalent to updating [C((j/)] in preparation 
for a further iteration of the nonlinear solution except here 
the requirement is to produce a more accurate solution to the 
right hand side of equation (10), 

Thus equation (10) may be rewritten as 

3x = [K 0|,p)] 
3Q 
3x 

a[K(i|> >] 

9x {* p » (11) 

which can be considered to be the nonlinear form of equation 
(7). 

The implementation of this system is described in figure 
1 with the major changes being restricted to the frontal and 
stiffness routines. It should be noted that automatic redes-
cription of the boundary geometry is required which allows per­
turbation of the design vector x . This is achieved by using 
a mesh generation system which calculates nodal coordinates 
as a function of the prescribed design variables. 
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Consider a two dimensional problem of diffusion through 
a cylinder where some relationship exists between the diffus-
ivity K and the concentration <j>. The cylinder geometry and 
boundary conditions are shown in figure 2, The internal radius 
R is the design variable of the system. We are interested 
in calculating the design derivatives 3\JJ/3R which will define 
explicitly the mathematical model by equations (1) and (2), 

In this example for simplicity a linear function relating 
diffusivity and concentration will be considered where 

k = k = k (1 + ai|i) (12) 
x y o 

a is a coefficient with values a > -1. The Q term of equation 
(8) is zero. 

The analytical solution for this problem is presented in 
the text by Crank [8] and will be used for direct comparison 
with the numerical solution, 

5. EXAMPLES 

The thick cylinder domain was radially discretised into 
10 eight-noded, parabolic, isoparametric elements, figure 2. 
The perturbation step of the inner boundary was AR = 0.005 
for all examples. Only the inner boundary nodes of the mesh 
were perturbated. The value of a was varied for the five 
examples shown so that the accuracy of the sensitivities could 
be compared for various strengths of nonlinearity and shapes 
of the <j> distribution. The values of a chosen were a = 0 (linear 
case), 0.5, 100, -0.5, -0.75. 

The ij> distribution for each value of a is plotted in figure 
3. The finite element solution for the sj) distribution showed 
excellent agreement with the analytical values. 

The sensitivities 3<j>/3R calculated by the force derivative 
technique for each value of a have been tabulated in Table 1 
to 3. The differenced analytical sensitivities are given together 
with the relative errors. The most erroneous results which are 
values of a = -0.5 and -0,75 respectively are shown plotted 
in figures 4 and 5. Plots of 3(j>/3R from tables 1 to 3 have 
not been shown since the results are very nearly coincident. 

It will be noticed that as a -> -1 the gradient of sjj near 
to the inner boundary increases appreciably. Correspondingly 
the error in the sensitivities increases. The problem dependency 
of this technique is thus apparent. However, for values of 
a > -0.5, good agreement between the analytical and force deriva­
tive sensitivities can be shown and hence demonstrates the 
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feasibility of this method as applied to nonlinear continuum 
problems, 
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Fig, 2 10 element mosh for diffusion through thick cylinder 

RADIUS 

5.005 

5.75 

6.50 

8.00 

9,50 

11.00 

12.50 

14.00 

15,50 

17.00 

18,50 

20,00 

TABLE 1 

RADIUS 

5.005 

5.75 

6.50 

8.00 

9.50 

11.00 

12,-50 

14.00 

15.50 

17.00 

18.50 

20.00 

ANALYTICAL 

3R1 

0.0 

0.1297534 

0,1168916 

0,0953781 

0.0774899 

0.0622297 

0.0489234 

0.0371268 

0.0265321 

0.0169168 

0,0081151 

0,0 

Design Sensitivities 

ANALYTICAL 
3-t 
8R1 

0,0 

0,1112788 

0,1030521 

0,0882162 

0.0749209 

0.0626979 

0.0512483 

0.0403671 

0.0299050 

0.0197481 

0.0098050 

0.0 

NUMERICAL 
30 
3R1 

0.0 

0.1299473 

0.1178129 

0.0959705 

0.0779913 

0.0626276 

0.0492372 

0.0373648 

0.0267022 

0.0170252 

0.0081671 

0,0 

for a « 0.0 

NUMERICAL 

8R1 

0.0 

0,1116732 

0.1025151 

0.0859084 

0.0715988 

0.0588333 

0,0472530 

0,0365868 

0.0268498 

0.0173054 

0,0084493 

0.0 

RELATIVE 
ERROR 

0.0 

-0,0001938 

-0.0008214 

-0,0005924 

-0,0005014 

-0.0003978 

-0,0003138 

-0,0002379 

-0.0001701 

-0.0001084 

-0.0000520 

0.0 

RELATIVE 
ERROR 

0.0 

-0.0003944 

0,0005370 

0.0023078 

0.0033221 

0.0038648 

0.0039953 

0.0037805 

0.0032552 

0,0024427 

0.0013558 

0,0 

TABLE 2 Design Sensitivities for a - 0.5 
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ANALYTICAL NUMERICAL RELATIVE 
RADIUS _3$_ jj$_ ERROR 

3RX 3Rj 

5.005 

5.75 

6,50 

8.00 

9,50 

11.00 

12.50 

14.00 

15.50 

17.00 

18.50 

20.00 

0.0 

0.0690817 

0.0655961 

0,0592269 

0.0533839 

0.0478384 

0.0424153 

0.0369478 

0.0312318 

0.0249348 

0.0172622 

0.0 

O.'O 

0.0708727 

0.0672198 

0.0592269 

0.0545398 

0.0487955 

0.0431826 

0.0375230 

0.0316073 

0,0250914 

0.0171563 

0.0 

0.0 

-0.0017910 

-0.0016236 

-0.001347 

-0.0011559 

-0.0008620 

-0.0007673 

-0.0005753 

-0.0003754 

-0.0001566 

0.0001059 

0.0 

TABLE 3 Design Sensitivities for a * 100 

Fig, 3 Potential $ v Radius for various a values 
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Fig. i Design Sensitivity - j — v Radius B, = -0.5 
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16 

Fig. 5 Design Sensitivity -|$ v Radius R for a « -0.78 



6. PROPOSED OPTIMAL DESIGN OF SEMICONDUCTOR DEVICES 295 

From the previous section it has been shown that design 
sensltivites can be calculated for nonlinear field problems. 
The application of the force derivative technique to optimise 
the performance of off-state semiconductor devices is obviously 
apparent, 

Differentiating equation (2) with respect to a design variable 
x and rearranging we obtain the potential sensitivity 

! ? • « • ' i f - v S-v 
V V V 

3C 
An exact difference of the derivative of the second term ——, 
will be obtained in this case as the capacitance matrix is v 

not a function of ip. The Q vector would similary be updated 
with the \JJ values from the converged solution as if preparing 
for a further iteration. 

Once the potential sensitivities have been found the electric 
field sensitivities 3e/3x can also be calculated. The electric 

v 
field may be expressed in terms of the potential as follows 

e = - V* (14) 

In the finite element notation this can be expressed as 

E = - [B]>|i (151 

where the B matrix is the cartesian shape function derivatives. 
Differentiating equation (15) with respect to x we obtain the 
electric field sensitivities 3e/3x 

v 

v *• v v ' 

T 
where the derivatives of the B matrix 3[BJ /3x can be found 
as described in [10]. 

This mathematical model describes the behaviour of potential 
distribution of the device in terms of the system variables 
and the next obvious step is its inclusion in a sequential opt-
misation technique. It is suggested that the move limit method 
with nonlinear programming would be particularly versatile since 
this would allow control over the accuracy of solution and is 
also generally applicable to problems which exhibit nonlinear 
response. 

This procedure can be immediately adapted for the optimum 
design of many off-state semi-conductor devices. For instance 
consider the bevelled p-n junction shown in fig. 6. Here the 
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Fig, 6 Negative bevel, planor p-n junction 

"design variables are 6, L and L„ and relate to the device geo­
metry. The optimum design would be the vector (6,L ,L2) which 
minimises the maximum electric field within the device. Simi­
larly consideration could be given to the important geometric 
configuration of etched p-n junctions. Here cubic splines could 
be utilised to define contour shpes thus enabling complex junc­
tions to be developed whilst employing only a small number of 
design variables. 

7. CONCLUSION 

This paper demonstrates a feasible method for calculating 
design sensitivities for nonlinear field problems. The evalua­
tion of these derivatives allows explicit development of the 
objective and constraint functions which may then be used to 
form the system model. An example of the technique applied 
to a diffusion problem gave good results and demonstrates that 
acccurate design derivatives can be obtained for nonlinear con­
tinuum problems. 

Maximum utilisation of available software has been made 
with the main solver being based on well proven finite element 
programs. It is apparent that the implementation of sensitivity 
analysis in such situations only consumes a small fraction of 
the total computational time involved, the major portion being 
attributed to the solution of the nonlinear equations. 

The extension of this technique to semiconductor devices 
is discussed and the related equations are derived for the cal­
culation of design sensitivities. 
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The method is related to the optimum design of bevelled 

and etched p-n junctions and possibly geometrical layouts are 
proposed. It is envisaged that a fully sequential optimisation 
process based on design sensitivities could be highly beneficial 
in solving and redesigning the many device problems encountered 
in practice. 
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