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SUMMARY 

For two n-channel MOST's with effective channel lengths 
of 3.3ym and 1um, respectively, two analytic charge sharing 
models are compared with the exact numerical simulator GALENE 
and a recently developed highly efficient two-dimensional nu
merical MOST-model. If device characteristics are increasingly 
influenced by charge sharing or even punch through the examples 
demonstrate the breakdown of the analytical models whereas the 
efficient numerical model preserves its pedictive capability. 

1. INTRODUCTION 

With decreasing device dimensions the influence of short 
channel effects on electrical characteristics of MOST's in
creases. Among these parasitic effects charge sharing and punch-
through are important examples. In classical analytical MOST-
models these effects are not included. Hence, various attempts 
have been made to incorporate the charge sharing. One approach 
often used is to describe the bulk charge shared by the gate 
by a trapezoid. This method is best justified below or near 
threshold resulting in improved threshold voltage models /1,2/ 
and more accurate models for the subthreshold /3/ current. 
Nevertheless these improved models can fail if the device ope
rates near punch-through. 

A well established approach to avoid this problem is the 
"exact" two-dimensional numerical device simulation requiring 
the solution of Poisson's equation and at least one continuity 
equation. Unfortunately the relatively high computational 
effort prevents the extensive use of this highly accurate pre
dict ive tool. Therefore, a simplified two—dimensional numerical 
MOST-model has recently been developed. 

Using two n-channel MOST's with different channel lengths 
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the accuracies of two analytical charge sharing models and the 
new numerical model are examined by comparing their results 
with "exact" two-dimensional simulations. 

2. DESCRIPTION OF THE MODELS 

a) Model 1: 
Model 1 is the device simulation program GALENE A / which 

is used here to solve numerically Poisson's equation and the 
electron continuity equation in two dimensions. All relevant 
physical mechanisms like doping dependent mobility, mobility 
degradation in the channel region, and velocity saturation etc. 
are taken into account. For both examples described later a 
nonequidistant grid of 30 horizontal and 50 vertical grid lines 
has been used. All linear systems occuring during the solution 
procedure have been solved by direct elimination. 

b) Model 2: 
Model 2 is the new efficient numerical MOST-model which 

comprises similar to de la Moneda /5/ the two-dimensional 
Poisson equation and a simplified one-dimensional electron 
(or hole) continuity equation 

A*(x,y) = - P ~ ^ -

depth depth 

*L( J Unn(X,y)f^n(y)dx) = f (G-R)dx 
0 0 

where the mobility dependence on doping and fields is modeled 
as in GALENE. In contrast to de la Moneda's original approach 
both equations are discretized using the box integration method. 
The Newton Raphson method is used for solving the resulting 
nonlinear system of finite difference equations, thus over
coming the well known convergence problems of the decoupled 
method (Gummel's nonlinear relaxation method). Again the line
arized system is solved by direct elimination. Moreover, the 
efficiency of this model is increased by an improved space dis
cretization scheme allowing coarser grids in regions where 
electron density varies rapidly. For the examples discussed 
later a nonequidistant grid of 15 lateral and 2k vertical grid 
lines has been used. 

c) Model 3: 
Model 3 is the analytical charge sharing model for sub

threshold current as first proposed by Taylor /3/. In this 
model the region of the bulk charge shared by the gate is 
approximated by a trapezoid. The space charge layer widths 

(D 

(2) 
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defining this trapezoid are approximated using the formula for 
a one-sided planar abrupt junction. This model is a general
ization of Yau's threshold voltage model /1/ which is imple
mented in the SPICE level 2 MOST-model. 

d) Model k: 
Model h is a generalization of Dang's threshold voltage 

model /2/ and describes the drain current in the subthreshold 
region. This generalization is similar to Taylor's general
ization of Yau's model. Again a trapezoid is used to describe 
the region of the bulk charge shared by the gate, but now the 
lateral space charge layer widths are approximated by the for
mula for a one-sided cylindrical abrupt junction. Dang's model 
is implemented in the SPICE level 3 MOST-model. 

3. EXAMPLES AND DISCUSSION 

Two n-channel MOST's with effective channel lengths of 
3.3ym and 1ym have been chosen as examples. In order to show 
only the influence of channel length reduction all other para
meters are identical for both transistors, i.e. oxide thickness 
dox=22nm, substrate doping Nj^=1.5'10^5cm~3, and junction depth 
x-=0.36ym. 
J 

For the 3.3um MOST the subthreshold characteristics of the 
four models are compared in figures 1 and 2 for VQ=0.5V and 
Vp=5V, respectively. It can be seen that in both cases the 
difference between model 1 and 2 is negligible (see also table 
1) whereas the deviation of the analytical models is signifi
cant especially for model 3 and higher drain voltage. The 
following ratio measures the influence of drain voltage on 
subthreshold current: 

m ( V G ) = i°(v°=0,5V^) (3) 

For the numerical models and model It this ratio is independent 
on the gate voltage m=1.5 and m=2.1, respectively, whereas it 
varies with gate voltage between m=6 and m=8.U for model 3. 
This result clearly indicates that both analytical models over
estimate the influence of drain voltage. The reason for this 
discrepancy of the analytical models is their poor approx
imation of the charge shared by the gate as can be seen from 
comparing in figures 3 and h the trapezoids predicted by the 
analytical models with the corresponding regions resulting 
from model 1. 
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Figure 1: Subthreshold characteristic for example 1 
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Figure 2: Subthreshold characteristic for example 1 
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VG - -0.2V 
V g - O.V 

VD - 0,5V 

BULK-CHARGE SHARED BY THE GATE AS PREDICTED BV GALENE 

BULK-CHARGE SHARED BY THE GATE AS PREDICTED BY MODEL 3 

SOURCE DRAIN 

VG - -0,2V 
V B - O.V 
V D - 5.V 

BULK-CHARGE SHARED BY THE GATE AS PREDICTED BY GALEHE 

BULK-CHARGE SHARED BY THE GATE AS PREDICTED BY MODEL 3 

Figure 3: Plots of equipotentiallines for example 1 
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• - BULK-CHARGE SHARED BY THE GATE AS PREDICTED BY MODEL H 

DULK-CHARGE SHARED BY THE GATE AS PREDICTED BY GALENE 

BULK CHARGE SHARED BY THE GATE AS PREDICTED BY MODEL k 

Figure h: Plots of equipotentiallines for example 1 
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Table 1 

Performance of model 2 in comparison to model 1 

characteristic 

VD=.5V,-.5V£VG£-.1V 

VD=5.V,-.5VlVG£-.1V 

vG=o.v, .5VivD<_ 5.v 

VQ=2.V, .5V£VD£ 5.V 

vG=i*.v, -5VivD£ 5.v 

Leff=3.3ym 

E 
max 

fc.9 

3.5 

lt.1 

5.6 

7.6 

E 
mean 

2.It 

1 .6 

3.3 

3.8 

7 

Gain 

31 

31 

28 

31 

31 

L e f f=1pm 

E 
max 

8 

28 

12.1 

5-2 

10.6 

E 
mean 

21* 

6.8 

It.7 

7.6 

Gain 

33 

32 

3 It 

36 

38 

E ,E are the respective errors in %; 
max mean 

Gain = CPU-time(model 1 )/CPU-time(model 2) 

The simplified numerical model 2 is not only sufficiently 
accurate for subthreshold currents but also for the output 
characteristics shown in figure 5 and 6. For the 3.3ym transis
tor the deviation from model 1 is less than 6% as can be seen 
from table 1. This tolerable loss of accuracy reduces the re
quired CPU-time by a factor of about 30, though model 1 is 
significantly accelerated by utilizing the fine grid solutions 
of model 2 as accurate starting conditions. For this example 
the 8% error of model 2 is mainly due to the coarse grid and 
the error reduces to less than \% if the same grid is used as 
for model 1. Comparable results are obtained from model 2 for 
the 1um transistor (see table 1 and figures 7~9). But here the 
somewhat larger errors for the subthreshold characteristic 
with VQ=5V are mainly caused by the underlying simplifications 
of this model and less by the coarse grid, since the deep punch-
through current occuring in this device for higher drain volt
ages (see figure 10) is not precisely described by the one-
dimensional equation (2). 

For the 1um transistor no subthreshold current can be 
calculated from the analytical models, since both models 
predict for all bias points a vanishing bulk charge shared by 
the gate. As can be seen from the exact solutions in figure 10 
this is only true for the punch-through case (Vp=5.V) whereas 
for smaller drain voltages a significant part of the bulk 
charge is shared by the gate. 
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Figure 5: Output characteristic near threshold for example 1 
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Figure 6: Output characteristics for example 1 
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Figure T: Subthreshold characteristics for example 2 
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Figure 8: Output characteristic near threshold for example 2 
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Figure 9- Output characteristics for example 2 
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VG - -0,2V 

VR - O.V 

Vn - 0,5V 
BULK-CHARGE SHARED BY THE GATE AS PREDICTED BY GALENE 

THE MODELS 3 AND <t PREDICT A VANISHING CHARGE SHARED BY THE GATE 

Figure 10: Plots of equipotentiallines for example 2 
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The shortcomings of the discussed analytical short channel 
MOST-models do not exist for the simplified numerical model 
which preserves its predictive capability even for very short 
channel devices. Moreover, for the considered examples the new 
model requires only about 1U sec CPU-time per bias point on a 
DATA-GENERAL ECLIPSE MV/10000 minicomputer. This high effi
ciency of the model enables its implementation in a mixed-level 
device circuit simulator like MEDUSA /6/. 
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