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ABSTRACT

Simulation of semiconductor device is very difticultin 2
or 3 dimensional cases because of their irregular boundaries
involved. Usually tinite element method is prelered in these
cases. But, despite of the flexibility to adapt to any geometry,
this method doesn't have a whole approval of the scleuatitic
community because its programmation is iong and tedious, exceptif
a well documented subroutine library is available. Another method
i.e. finite difference method is conceptually easier but requires
a mapping from physical piane to rectangular coordinate piane.
There are many procedures to generate this coordinate system.,
Among them, use of the Laplace equations, because of the
simplicity of formuliation and possibility of coordinate-iine-spacing
control, Is very attractive.

Oxide here is considered as very viscous fiuid tioating
upon a rigid silicon iayer. System wliil contain besides Navier—
Stokes equations and oxygen diffusion equation, two elliptic
equations (actually their inverscs arc tsed). The ftirst two
groups of equations (which we refer as phisical) determine
boundary of oxide domain which will be injected to the inverse
elliptic squations (which we roter as transformation) to fix
boundary conditions of the latters. Since physicul equations
require the transformation equations to be formulated, we have a
system of completely coupled 6 equations. Increase of the number
of equations Is counterbalanced by the fact that we have now
a partial dltferential equation system specified In fixed
rectangular plane, so it is very casy to formulate In terms of the
tinite difference. Moreover there is no need for additional
Interpolation due to movement of the physical domain, because this
/s geniously incorporated in the above system.

1. INTRODUCTION

Oxidation is one of the most crucial parts ot the
semiconductor device fabrication processes besides impurity
dittusion. Surprisingly, its numerical studies are rather scarce,
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compared to the proliteration of the latters’, partly because of
the complexity of the numerical treatments. Recently Chin studied
creeping flow of the oxide layer, using boundary value
technique [5), which avoids finite dillerence or linile element
formuiation, more frequently used in physical simulations.

if you want to do a true 2 dimensional simulation of
oxidation process with finite difference method, because of the
complex geometry, some arrangments &re necessary.

Actually, there are two different approaches for use in
complex geometry.
a) Using a rectangie which embodies the whole physical domain
ot Interests. Classical rectangular lattice Is used so the tinite
ditference formuiation is straight way, but node points out of the
physical domain is wasted and boundary condition is painfully
handled.
b) Transformation of rectangular coordinate such a manner that it
tits to the physical domain. All node points are meaningful and
boundary treatments are more elegant. But physical equations
become more complicated, and frequentiy number of equations
increses.

We have chosen approach b) in this work but approach
a) is also feasible. For exemple, MAC code [7] Is one of the
most popular and well tested programmes in fluid dynamics research,
and it uses the latter approach.

2. TRANSFORMATION EQUATIONS

There are thousands of ditterent methods [3] to
generate coordinates fitted to thc physical domain. We have
chosen Thompsons' algorithm [1]1[2] because it can fit to any
virtually all connex compact domalins, with possibility of local
coordinate retinements (this technique Is not exploited in this
paper).

We brietly summarize here his algorithm for the readers who
are untamitiar  with it.

Consider a couple of elliptic equations detined in &

physical piane (x,y) :
(1) £ +tE . =0

n 0

xx+"yy=

it couple ot variables (g, q) is the coordinate of a
rectangular plane, this system forms a mapping of physical plane
(x,y) to rectangular plane (g,q). Suppose that the boundary
ot a given compact physical domaln corresponds to the frame ot a
rectangle and we have means of knowing the position of the
physical boundary, then the resojution of the inverse system (2)
becomes a typical Dirichlet problem.

(2) AX g g~ 2BX  pt VX g0

XY g7 28Y gt VY =0
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with cr=x"1+y2
n°n

BoX e XptY, Y,
7=xz+yz

its resolution gives us a correspondence between
interior points of the physical domain and of the rectangle, so
we can explain any physical equation in function of the
rectangular coordinate system (£,7)

Subsequently, in order to simplity the presentation, we
write all physical equations in (x,y) plane but do not forget to
transform them in (¢,7n) plane expression for the numerical
treatments. For exempise

£ - 0(Ey) , 8(x,y) _ Ynfe Yebq
x 0(&,m) " 0(&,m) J

e - 8UX,E) Bx,y) | “¥nfe Xefq
y o(&,m) 7 o(&,m) J

where J is the Jacobian J=x€yn-x.,]y€.

3. PHYSICAL EQUATIONS
3.1 bulk _region

According to the Chin's idea [4], we suppose oxide
layer forms a Iincompressibie Newtonian filuid., Because the
Reynolds number is very low in this case, the convective terms
can be neglected before viscous ones, and Navier Stokes
equations take the foliowing form.

(3) Uy +v =0

ut=—®x+vAu
vt=—®y+v6v

where (u,v) is velocity in (x,y) plane
d=p/p Is normalized pressure with p oxide density
v=u/p is kinematic viscosity with u dynamic viscosity

in order to avoid numerical difficulties due to the
presence of the continuity equation i.e. we don't know any no
trivial Initial velocity distribution, and to make pressure value
more tractable, we transform system (3) to the following torm [7] by
deriving the second equation by x and the third equation by vy,
adding them all together and simplifying with the help of the tirst
equation but retaining the time derivative term O0Dy.

(4) AQ-—Dt+€0t
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= -— +
u o +vAu

=-P 4
Ve ¢Y vav

with D=u_+v
X Y
The time derivative of prossurc Is addod as numeorical
artifice. € positive quantity is fixed In function of precision
required. It is smaller when more accuracy is desired.
The time derivative term retained D; appears as source
term of dilfusion type equation and calculated as:

D = D(t+dbt)-D(t) _ _ D(t)
£t T 3t Bt

it permits to relax any arbitrary initial volocity
distribution lv valucs satistying the continuity oquation [8].

We used here so cailed primitive variables (u,v,p)
tormulation. Fluid researchers should be aiso familar with
vorticity—stream function {(w, 9) formulation which uses only 2
variables Iinstead of 8, but it has additional difficuities In
boundary treatments, in particular in oxide—air interface where
prussure value enters explicitly in boundary condition ex-
pression.

We have no comments about oxygen ditfusion. We simply used
the 2 dimensional parabolic equation with constant ditfusivity

(5) g% = CAN

3.2 boundary conditions

Boundary conditions used by Chin [56) Is correct,
except the free boundary i.e. oxide-air interface, condition.
He has to use the normal and tangential stresses nuil condition,
instead of the pressure equllibrium condition [6]. This Is
particuiary true In high viscosity case.

in order to resolve analytically the system b), it is
unnecessary to have overall boundary condition for all 3 primitive
variables because this has the mixture of 1 and 2 orders space
derivative terms. But for numerical treatments, this statementis
taise. Supplementary boundary conditions are necessary, other—
wise the system would be singular. Troubles caused by
introduction of the extra boundary conditions are weli known by
tiuld reserachers [9) . They have to satisty stability and
accuracy conditions besides von Neumann condition applicable in
bulk region [10]. Unfortunately overall accepatble procedureis
not yat avalliable. We used intoerploation based tormulg because
this is easy to apply, and accuracies and stabilities are not so
bad [11].

3.3 initial conditions
Strictly speaking, simulation must begin with a zero
thickness oxide pad. Naturally this is numericaily unrealizable.
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You have to choose some small thickness, but nottoo much smaliito
avold numerical difficuities. Oxygen density is nearly zero at
sllicon—-oxide intertace and there is no movement inside the oxide
pad. Pressure is 1 bar everywhere.

4. PROGRAMMING
We have now a system ot 6 partial ditfterential equations
defined In tixed and rectangular 2 dimensional domain (¢,7) I.e.

Oxygen diffusion equation (5)
Navier-Stokes equations (3)
Quasi elliptic equations for coordinate change (2)

To be more accurate and perhaps to be more stable, we
have to integrate simuitanously 6 equations. in order to avoid to
have a too big matrix to Invert (in fact inversion cost is O(n2)
in n dimensional banded matrix case), we treat this system of
partial ditferential equations by 3 resolution steps. Firstiy we
resolve the diffusion equation and this givos us an oxygen
concentration at silicon-oxide interface. This concentration is
used for calcuiating boundary condition at silicon-oxide
interface for Navior Stokes oquations. So at second step we
resolve 3 fluid equations. Veiocity distribution so calculated is
used for updating position of the physical boundary. Last step
is the resolution of the quasi elliptic equations with the heip
of the boundary condition obtained at the second step. We can
repeal this sequence until sufficient amounts of time elapse. Each
linear system is rasolved with one of the iterative methods
proposed in [12].

6. RESULTS AND CONCLUSION

Bacausc routine which calculates nitride deformation is
not yet incorporated in our programme, we can tested only the
case where thickness ot the latter is intinite. So no-slip wall
condition is applicaled at nitride—oxide Intertace. Figurc 1
represents geovmelry of the oxide layer after about 3 hours of
oxidation. Despite coarse grids (total grid points 40 X 20,
oxide—alir Interface 20 points, oxide-nitride interface 20
points), coordinate titting aigorithm works perfectiy. A turn of
silicon—oxide interface just under the end of nitride Is visible.
it corresponds to high gradient of oxygen concentration (ftig.
2). Because this zone correspons to tast changes of physical
parameters, the local coordinate refilnement Is desirable. It
consists in adding source terms to elliptic equation system (1)
[1]. Our future code wiil inciude this effect to obtain more
accuracies and stabliities.

it takes about 2 hours of CPU time with DPS 8/70
processor to obtain this resuit.

We concluded that the ftinite ditference method using
Thompson 's algorithm can well compete with the finite element method
in compiox gecometry applications.
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Fig. 1. Geometry of birds beak in (x,y) plane

unit of distance Is j
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Fig. 2. Oxygen concentration in (¢,7n) plane,
normalized to value of air-oxide interface
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