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ABSTRACT 
Simulation of semiconductor device is very difficult In 2 

or 3 dimensional cases because of their Irregular boundaries 
involved. Usually finite element method is prelered in these 
cases. But, despite of the flexibility to adapt to any geometry, 
this method doesn't have a whole approval of the scientific 
community because Its programmation Is long and tedious, except It 
a well documented subroutine library Is available. Another method 
i. e. finite difference method is conceptually easier but requires 
a mapping from physical plane to rectangular coordinate plane. 
There are many procedures to generate this coordinate system. 
Among them, use of the Laplace equations, because of the 
simplicity of formulation and possibility of coordinate-line-spacing 
control, Is very attractive. 

Oxide here is considered as very viscous fluid floating 
upon a rigid silicon layer. System will contain besides Navier-
Stokes equations and oxygen diffusion equation, two elliptic 
equations (actually their Inverses arc used) . The first two 
groups of equations (which we refer as phisical) determine 
boundary of oxide domain which will be Infected to the inverse 
elliptic equations (which wc refer as transformation) to fix 
boundary conditions of the latters. Since physical equations 
require the transformation equations to be formulated, we have a 
system of completely coupled 6 equations. Increase of the number 
of equations is counterbalanced by the fact that we have now 
a partial differential equation system specified In fixed 
rectangular plane, so It is very easy to formulate in terms of the 
finite difference. Moreover there is no need for additional 
interpolation due to movement of the physical domain, because this 
is geniously incorporated in the above system. 

1. INTRODUCTION 
Oxidation Is one of the most crucial parts of the 

semiconductor device fabrication processes besides Impurity 
diffusion. Surprisingly, Its numerical studies are rather scarce, 
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compared to the proliferation of the latters', partly because of 
the complexity of the numerical treatments. Recently Chin studied 
creeping flow of the oxide layer, using boundary value 
technique [ 5 ] , which avoids finite difference or Unite element 
formulation, more frequently used in physical simulations. 

If you want to do a true 2 dimensional simulation of 
oxidation process with finite difference method, because of the 
complex geometry, some arrangments are necessary. 

Actually, there are two different approaches for use in 
complex geometry. 
a) Using a rectangle which embodies the whole physical domain 
of Interests. Classical rectangular lattice is used so the finite 
difference formulation Is straight way, but node points out of the 
physical domain Is wasted and boundary condition is painfully 
handled. 
b) Transformation of rectangular coordinate such a manner that it 
tits to the physical domain. All node points are meaningful and 
boundary treatments are more elegant. But physical equations 
become more complicated, and frequently number of equations 
Increses. 

We have chosen approach b) in this work but approach 
a) is also feasible. For exemple, MAC code [ 7 ] is one of the 
most popular and well tested programmes In fluid dynamics research, 
and it uses the latter approach. 

2. TRANSFORMATION EQUATIONS 
There are thousands of different methods [ 3 ] to 

generate coordinates fitted to the physical domain. We have 
chosen Thompsons ' algorithm [1 ] [2 ] because it can fit to any 
virtually all connex compact domains, with possibility of local 
coordinate refinements (this technique is not exploited in this 
paper). 

We briefly summarize here his algorithm for the readers who 
are unfamiliar with it. 

Consider a couple of elliptic equations defined in a 
physical plane (x, y) : 

(I) i +1 =0 
KJ-> xx y y 

77 +7? =0 xx y y 

If couple of variables (£,T)> IS the coordinate of a 
rectangular plane, this system forms a mapping of physical plane 
(x,y) to rectangular plane (£,7)). Suppose that the boundary 
of a given compact physical domain corresponds to the frame of a 
rectangle and we have means of knowing the position of the 
physical boundary, then the resolution of the inverse system (2) 
becomes a typical Dlrichlet problem. 

(2) ax,-2j3x, +*yx„-0 
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w i t h a=x +y 
V V 

/S=x,x + y , y 

2 , 2 
y"xt *Yi 

Its resolution gives us a correspondence between 
Interior points of the physical domain and of the rectangle, so 
we can explain any physical equation In function of the 
rectangular coordinate system (%, -n) 

Subsequently, In order to simplify the presentation, we 
write all physical equations In (x,y) plane but do not forget to 
transform them In (£,T)) plane expression for the numerical 
treatments. For exemple 

f - 6JJLLZI / 8 ( x ' y ) = Yv£t~ yzfv 
x 'QJTTVT ' OTTTTTT J 

f = e(x>£) / o(«.y) _ ~xv£e+ xtfv 
y sTTTTT ' 'sJJTvT J 

where J Is the Jacoblan ^=^^y-n~x-nyt. 

3. PHYSICAL EQUATIONS 
3. 1 bulk region 

According to the Chin's Idea [4 J, we suppose oxide 
layer forms a Incompressible Newtonian fluid. Because the 
Reynolds number Is very low In this case, the convective terms 
can be neglected before viscous ones, and Navier Stokes 
equations take the following form. 

( 3 ) u +v =0 
K ' x y 

u =-(J) +vAU 
t x 

v = - * +vAv 
t y 

where (u,v) Is velocity In (x.y) plane 
&=p/p Is normalized pressure with p oxide density 
v(i/p Is kinematic viscosity with fi dynamic viscosity 

In order to avoid numerical difficulties due to the 
presence of the continuity equation i.e. we don't know any no 
trivial Initial velocity distribution, and to make pressure value 
more tractable, we transform system (3) to the following form [ 7 ] by 
deriving the second equation by x and the third equation by y, 
adding them all together and simplifying with the help of the first 
equation but retaining the time derivative term Of. 

( 4 ) A * - - D + e * 
L. 
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u ~-<t> +vAu 
t X 

v =-<t> +vAv x, y 
w i t h D=u +v x y 

The time derivative of pressure is added as numerical 
artifice, e positive quantity is fixed in function of precision 
required. It is smaller when more accuracy is desired. 

The time derivative term retained Of appears as source 
term of diffusion type equation and calculated as: 

_. _ D ( t + 8 t ) - D ( t ) _ D ( t ) 
D t oE = ~bT 
It permits to relax any arbitrary initial voloclty 

distribution lu values satisfying the continuity equation [ 8 ] , 
We used here so called primitive variables (u,v,p) 

formulation. Fluid researchers should be also famllar with 
vorticlty-stream function (u.f) formulation which uses only 2 
variables instead of 3, but It has additional difficulties in 
boundary treatments, in particular In oxide-air interface where 
piussure value enters explicitly in boundary condition ex­
pression . 

We have no comments about oxygen diffusion. We simply used 
the 2 dimensional parabolic equation with constant ditfusivity 

^ ™ - cm 
o t 

3.2 boundary conditions 
Boundary conditions used by Chin [ 5 ] Is correct, 

except the free boundary i.e. oxide-air interface, condition. 
He has to use the normal and tangential stresses null condition, 
instead of the pressure equilibrium condition [6]. This Is 
partlculary true in high viscosity case. 

In order to resolve analytically the system b) , It Is 
unnecessary to have overall boundary condition tor all 3 primitive 
variables because this has the mixture ot 1 and 2 orders space 
derivative terms. But for numerical treatments, this statement is 
false. Supplementary boundary conditions are necessary, other­
wise the system would be singular. Troubles caused by 
Introduction ot the extra boundary conditions are well known by 
fluid reserachers [ 9 ] . They have to satisfy stability and 
accuracy conditions besides von Neumann condition applicable In 
bulk region [10]. Unfortunately overall accepatble procedure is 
not yet available. We used interpioatlon based formula because 
this is easy to apply, and accuracies and stabilities are not so 
bad [11). 

3.3 Initial conditions 
Strictly speaking, simulation must begin with a zero 

thickness oxide pad. Naturally this is numerically unrealizable. 
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You have to choose some small thickness, but not too much small to 
avoid numerical difficulties. Oxygen density is nearly zero at 
silicon-oxide Interface and there is no movement Inside the oxide 
pad. Pressure is 1 bar everywhere. 

4. PROGRAMMING 
We have now a system of 6 partial differential equations 

defined in fixed and rectangular 2 dimensional domain (£,T)) l.e 

Oxygen diffusion equation (5) 
Navier-Stokes equations (3) 
Quasi elliptic equations for coordinate change (2) 

To be more accurate and perhaps to be more stable, we 
have to integrate simultanously 8 equations. In order to avoid to 
have a too big matrix to invert (In fact inversion cost is 0(n2) 
in n dimensional banded matrix case) , we treat this system of 
partial differential equations by 3 resolution steps, hirstly wo 
resolve the diffusion equation and this givos us an oxygen 
concentration at silicon-oxide interface. This concentration is 
used for calculating boundary condition at silicon-oxide 
interface for Navior Stokes oquations. So at second step we 
resolve 3 fluid equations. Velocity distribution so calculatod is 
used for updating position of the physical boundary. Last step 
is the resolution of the quasi elliptic oquations with the help 
of the boundary condition obtained at the second step. We can 
repeat this sequence until sufficient amounts of time elapse. Each 
linear system is resolved with one of the iterative methods 
proposed in [12]. 

5. RESULTS AND CONCLUSION 
Because routine which calculates nitride deformation is 

not yet incorporated in our programme, we can tested only the 
case where thickness of the latter is infinite. So no-slip wall 
condition is applicated at nitride-oxide interface. Figure 1 
represents geometry of the oxide layer after about 3 hours of 
oxidation. Despite coarse grids (total grid points 40 X 20, 
oxide-air Interface 20 points, oxide-nitride interface 20 
points) , coordinate fitting algorithm works perfectly. A turn of 
silicon-oxide interface just under the end of nitride Is visible. 
It corresponds to high gradient of oxygen concentration (fig. 
2). Because this zone correspons to fast changes of physical 
parameters, the local coordinate refinement Is desirable. It 
consists in adding source terms to elliptic equation system (1) 
[1). Our future codo will include this effect to obtain more 
accuracies and stabilities. 

It takes about 2 hours of CPU time with DPS 8/70 
processor to obtain this result. 

We concluded that the finite difference method using 
Thompson ' s algorithm can well compete with the finite element method 
In complex geometry applications. 
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F/g. 1. Geometry of bird's beak In (x,y) plane 
unit of distance Is fi 
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F/g. 2. Oxygen concentration In (£.7)) plane, 
normalized to value of alr-oxtde Interface 
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