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At present the computer simulation of semi
conductor structures is attracting a great deal of 
attention in connection with an intensive develop
ment of electronic engineering. Within the frame
work of this simulation, new efficient methods of 
solving the set of equations describing processes 
taking place in semiconductors are constantly being 
developed. One of the first and most efficiently 
described methods was method [1] later used by many 
authors with reference to various semiconductor sys
tems. Nowadays there is a great amount of works dea
ling with both the One- (1D) and Two-dimensional(2D) 
calculations of a set of equations for holes and 
electrons and Poisson's equation for the electrosta
tic potential. 

In the 1D case the system is written as follows: 

» • * & - - " <1> 

JP = - *tv if - *P it- (5) 

with the following boundary condition: 

P(0)N(0) = P(l)N(l) = N*; T(x) » Hd(x) - Na(x); 

T(0) + P(0) - N(0) = T(1) + P(l) - N(l) » 0 ; 



Y(O) = V- ̂  ln( ?(())/%) ;*?(!) = ̂ f ln( HCD/HJ 3; 1 

Here N,P - electron, hole concentrations;^? -
electrostatic potential;\(x) - doping function; q-
electronic charge; Jn,Jp -hole and electron current 
densities ;Hf»,p«- drift mobilities of holes and ele-
trons; Dp.D^. - diffusion constants; R - recombina
tions raxe; 1 - diode length; V - diode voltage; 
Nj - electron density of the intrinsic semiconductor; 
k - Boltzmann's constant; T - temperature; £- di
electric constant; N^ , 1J* - donor and acceptor con
centrations. 

The dependence of carrier mobility on the 
doping impurity concentration and the electric field 
was taken according to [I-] , and the recombination 
rate was set proceeding from model [2] . 

Previously various methods had been used when 
approximating the initial set (l)-(5) by the finite 
difference circuit. Thus, for example, the replace
ment of variables suggested in [A] was made in (3 J, 
and the problem was solved on an explicit circuit, 
whide, however, led to great restriction on thet". 
In paper ̂ 5] when obtaining a finite difference 
analogue of continuity equations method [1] was used 
and, to solve them simultaneously with Poisson's 
equation, Newton's iteration method was used. The 
authors \S] proposed an iteration process based on 
the introduction of adjusting members into right 
and the left parts of the difference analogues of 
equations (l)-(3), allowing to reduce significantly 

the restriction by an integration step X which is re
duced to the form 47r6''C<1 Twhere <y= qt/4aN +^pP) -
conductance). 

The present paper dwells upon an iteration 
method of solving the (l}-(5) set, which can be 
written as: 

x. + q air = ^ 

1 q dx *° 
T* .,i pi+1 d 1 ? 1 * 1

 n „ i dP i + 1 

Jn " -Vn H IT" + * Dn dlT 

C* = q(^J N i + V p Pi+1),J>0 =T+ P0 - H0 ; 
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dx undz u ; 

Here i - iteration number, index M0" means that the 
corresponding variables are taken from the step pri
or in time. This method differs from those mentio
ned above in the fact that not Poisson's equation 
was used to find the electric field potential, but 
equation (7) which is the corollary of the set (1)-
(5) fjf]. A similar replacement was first used in the 
computer simulation of electric discharges in gas 
[8]. In going to the difference kind of continuity 
equations method [l] was used, It should be empha
sised that to provide algorithm convergency the 
difference analogue of equation (7) should be an 
exact algebraic corollary of the difference conti
nuity equations. At each time moment simultaneous 
iterations of continuity equations and equations 
for finding the potential (7) were made. Input from 
iterations was made when the following requirement 
was met: 

-1 +^-
q?iH «* (8) V + e 2 II « i 

The time-dependent step t was automatically incre
ased if requirement (8) was met under a given num
ber of iterations (of the whole set of equations). 

To control an accuracy of the algorithm des
cribed, calculations were made with decreasing the 
mesh step h^and particularly with increasing the 
number of meshpoints Ke along the space coordinate 
(from 60 to 120), changes in the steady-state cur
rent being less than 1%, 

Besides, the case when diode potential equals 
zero was tested. Shifting the point of reading out 
the potential so that^O) = 0, one can express hole 
and electron concentrations as follows [9] : 

P = Na.exp( - gjY) 

H - ffd.exp( $p(«P- fb)), fb = f n -H> 
P 

*f_, f- - Fermi quasipotential for electrones and 

holes. Poisson's equation (3) takes the form: 

- ^ L - e ^ e _ y ( < p ) f £ ( M > ) „ p - B r + r (9) 

It is difficult to solve this equation rigorously, 
and,since the electrostatic potential is known to 
have, in equilibrium, the configuration shown in 
Flg.1, this dependence was approximated by an ex
pression: 

<f (x) = ( 1 - 1 / ( 1 + «xp(C(x -xo))).?^ (10) 
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Substituting (10) into (9) and 
determining r (x) we got an ana
lytical solution for N, P,^ of 
the set (l)-(5), where xe- mid
point of the diode. The results 
of the test calculations showed 
that the maximal difference 
between an analytical solution 
and a calculated one for N(x) 
and P(x) was less than 2% in 

_,. ., the transition region and less 
Jris*1 than 10 % in the distribution 

tails( close to x=0 and x=l). 
The test calculations assemblage demonstrated 

a satisfactory accuracy of the suggested algorithm 
for solving the set of equations (1)-(5), with the 
average solving time being 1.5-2 minutes of compu
ter time on BECM-6 computer (at Ko=60 and the V=0.4 
v). Transition parameters were taken from paper [3] 

In the present paper a number of calculations 
were made aimed at choosing an algorithm for cons
truction of a nonuniform mesh along the space coor
dinate. They showed that the best result was obtai
ned on a nonuniform mesh with an automatic frequ
ency control,i.d., a mesh thickening in the areas 
of steep density gradients of carriers. At the ini
tial moment (t=0) a mesh thickening in the junction 
region was designated: 

hjj. = A(1- exp(- C'lx-xJ -£ 2)), 
where A - constant calculated from standardization; 
C» S%- varied constants, determining the maximal 
and minimal step h^. Then the mesh was constructing 
according to [10J at each moment of time. The recon
struction of the mesh was stopped as soon as a con
dition was reached: 

1 fr2"', N1- N1"1 P1- P1"1 / 
Lo LK=0 ^ + t . 

« 1 

and after that calculations were made on the sta
tionary nonuniform mesh up to reaching the steady 
state. 

Comparison of the results of calculating the 
set of equation (1)-(5) on a nonuniform mesh and 
those on a uniform mesh with a large number of mesh 
points (Ko=120) showed that a significant reduction 
of the number of meshpoints on an nonuniform mesh 
was possible which slightly affected the accuracy 
of calculation of integral characteristics. Thus, 
with introduction of a nonuniform mesh with 40 mesh 
points, magnitude changes of the steady-state cur
rent were less than 0.5#, with E„= 20 - <5/6(V=0.4v). 
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One should point out the influence of doping 

impurity magnitudes (N^ and N A) and applied poten
tial V on the characteristics of the above mentio
ned algorithm and the choice of an irregular mesh. 

Let's consider the case of a forward bias. 
The thickness of the barrier layer (for abrupt jun
ction) can be written as: 

i -cffc iVv>ga> 1 / a (ID 
and electron, hole concentration on the barrier lay
er boundaries with P- and N-regions as: 

qV qV-
V V ^ E l P * Pn=Pno-e^H^' <12> 

here Np,» Pm - equilibrium concentrations of mi no-
rity carriers, fc = kl ln(NdNA/Ef )/q - contact po
tential. The holes which have drifted to the N-re-
gion, diffusing in-depth, recombine, on account of 
which their concentration decreases: 

Pn^x)= Pno + ^ n o ^ ^ - 1 * " ^ - lET^' f0r X > X o 
P 

V x ) = Npo+ V>(exp(S}*"1)eXp( ¥°^» for x < xo 
Where Lp= V D P ^ P , Ln=Vbhtft (tp, ^k - characteristic 
lifetimes of holes and electrones in the N- and P-
regions accordingly). 

Prom (11) and (12) one can see that with in
creasing the forward bias the injected carriers 
concentration grows sharply, and the barrier layer 
thickness decreases. Due to imposing an "ohmness" 
condition on the contacts for sufficiently high ap
plied voltages (V~ %) in boundary regions at com
paratively small intervals Ax « 1 great changes in 
minority carriers concentration are achieved (up to 
1010 ), i.e. the influence of boundaries is felt. 
The slowing down of the convergence rate in this 
case can be explained by the fact that at V—»-*Pc a 
significant contribution is made by higher harmonic 
of solution whose damping is going on at comparati
vely slower rates. It should be noted that the use 
of a nonuniform mesh,stationary throughout the sta
ges of calculation, may lead to a significant error 
f'or the simple reason that at changing the magni
tude of the applied voltage gradient regions of 
hole and electron densities, influencing signifi
cantly the steady-state solution, move along the 
X axis, whereas it is in those regions the maximal 
decreasing of step h K should be achived. Note that 
a nonuniform stationary mesh is not applicable 
whatsoever in case of time-dependent boundary con-
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dition. Besides, an algorithm for calculation of the 
set of equations(1)-(5) was considered, in which 
finite-difference analogues of continuity eigen equ
ations for electrons and holes rather than method 
jjl] were used to find N(x) and P(x)j 

dP d ,, p d dp.dP n 

dN J d .. ,T d d n dN D 

Electrostatic potential Y was calculated from (7). 
It was found that such an algorithm not only fails 
to gain time compared with above mentioned, but 
also leads to a grave error. To avoid further signi
ficant approximation errors(connected with the ava
ilability of regions with large gradients jvhich in 
this case directly enter difference equations, as 
distinct from method [1] ), fine fractioning of the 
mesh in the gradient regions and an increase of 
meshpoints K0 up to 300-400 is necessary, which 
leads to a significant increase of computer time. 

It should be pointed out that the algorithm of 
solving the set (1-2,7) if convenient for 2D prob
lems, unlike algorithm [5J where at each moment of 
time transformation of large-scale matrices 3(K*M) 
(K,M - the number of fractioning the integrated re
gion) is required. Algorithm convergence (1-2,7) 
is slightly aggravated compared with metod [5j . 
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Fig.2 Dependence of current versus time, calcu
lated on the different mesh. V = 0.4v, junction 
parameters from [2]. Uniform mesh* o - K0= 120,x -
K = 60; nonuniform mesh; • - K = 60, A- K = 40, a-
K°= 20; y0= ̂ |uE0n0-, Eo=ect=o), n0= - ^ j -
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