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1. ABSTRACT 

Simulation approaches for Si and GaAs semiconductor dev­
ices have generally followed somewhat different lines, but as 
the Si devices are shrunk toward the submicron size range, the 
problems being addressed and the techniques being used to 
address them for both materials are converging. The physical 
problems common to devices made of both materials in smaller 
size ranges are enumerated, and the techniques currently used 
for their solution are reviewed. These techniques are now mov­
ing beyond that of iterative solutions of the current-flow and 
Poisson equations, toward descriptions of charge carrier flow 
in terms of average carrier energy or temperature. A means of 
determination of heated electron temperature is also described. 
Finally, particular problems in the simulation of devices made 
of materials such as GalnAs or InP, and such devices as the 
HEMT and the heterojunction BJT, are also discussed. 

2. "TRADITIONAL" SEMICONDUCTOR DEVICE SIMULATION 

"Semiconductor Device Simulation" is here taken to mean 
the determination of measurable device terminal parameters as 
functions of geometry and applied boundary conditions by means 
of solution of the basic carrier transport and continuity equa­
tions and Poisson's equation. Additional variables, such as 
surface-state densities in MOS oxides, may be taken as indepen­
dent or dependent. "Traditional" simulations utilize classical 
descriptions of carrier transport, such as the equilibrium 
relationship of electron velocity to electric field. In addi­
tion to determining measurable parameters, traditional simula­
tions may also provide information on internal electric field 
and charge distributions and other quantities of interest. 
Whether analytical or computer-based, traditional simulations 
have been able to provide descriptions of devices with active 
lengths greater than about two microns which agree well with 
experiment. 
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Analytical models 0f MOSFETs generally proceed on mc 
basis of Shockley's gradual-channel model, in which the longi­
tudinal field in the channel is taken to be much smaller than 
the transverse field [1]. While Shockley originally used the 
constant-mobility relationship v=juE, later workers modified his 
model to incorporate the effects of velocity saturation. 

The analysis of Schottky-barrier, Metal-Semiconductor FETs 
(MESFETs) can also proceed traditionally along lines laid down 
by Shockley. but in this case the material of greatest interest 
is GaAs which has a velocity-field relationship that is consid­
erably more complicated than that of Si. The GaAs MESFET can 
be analyzed using a v-E curve similar to that of silicon, and 
such an analytical treatment can be made to agree with experi­
mental results for specific devices by adjustment of low-field 
mobility or saturation velocity. However, a continuous analyt­
ical solution valid through saturation has not been available. 
Further, diffusion effects are difficult to incorporate. It is 
possible, however, to obtain a one-dimensional analytical MES­
FET solution by breaking the real GaAs v-E curve into three 
parts (constant mobility, constant negative mobility, satura­
tion velocity) and incorporating some measure of diffusion 
currents [2]. 

True two-dimensional simulation of FETs cannot be per­
formed analytically. For MOSFETs, the 2D computer programs 
GEMINI [3] and MINIMOS [4] have proved useful within the limi­
tations of the approximations built into them in order to make 
their use economical. For MESFETs, CUPID [5] and CADDET [6] 
may be used. FIELDAY [7] can perform 2D or 3D simulations of 
MOS or bipolar devices, but is not generally available; SEDAN 
[8] and LUSTRE [9] are one-dimensional bipolar device simula­
tors that are. 

2.1 £as_ic. Equations 

Traditional two-dimensional device simulators solve the 
basic equations: 

a) Poisson's equation 

^ = f ih N D - NA - n + p } 

s o 

(1) 

b. Carrier transport equations. 

J = q n v + q D Vn, (2) 
n n n 

and 

Jp = q p V p - q Dp Vp, (3) 
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v = ju E, (4) 
n n 

v = n E, (5) 
P P 

and 

E = -Vt (6) 

Though Butcher [10] demonstrated that the diffusion term should 
be the form of q(c)/dx){Dn} instead of that of q D{(o)/dx)}n for 
one-dimensional problems, q{(o)/o)x)D}n may usually be neglected. 
The mobilities ju and ji and the diffusivities D and D as 
functions of electric freld, and the diffusivities are "also 
anisotropic, not scalars but tensors. 

c_) Continuity equations 

^J-= V « (Jn/q) + G. (7) 

and 

$•= V « (J /q) - G, (8) 
at P ̂  

where G represents the carrier generation-recombination term. 

dj Total current equation 

J = J + J - € e -4- V t (9) 
n p s o at 

1.1 Materials Parameters 

Equations (4) and (5) may be replaced by analytical curve 
fits. For .electrons in silicon, for example, at the doping 
level of 10 /cm , a suitable form is: 

v(E) =/i E/U+(E/E )2}1/2 (10) 
o c 

where ju is the low field mobility and E is the "critical 
field".0 C 

Diffusivity tensors are hard to find for any material. 
Since transport properties in semiconductors with impurity den­
sities of less than 10 /cm . at an electric field of greater 
than 10 kV/cm, are almost the same as in pure material, the 
diffusivity parallel to the electric field for high purity Si 
can be extrapolated to low fields and used for doped material, 
using a modified Einstein relation [113. The extrapolation 
requires matching the relation 
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where t is the energy relaxation time, to the pure-Si dif­
fusivity at 10 kV/cm. The anisotropy of the Si diffusivity is 
generally negligible [12]. 

In GaAs, up to electric fields of 25 kV/cm the steady 
state drift, velocities of electrons at doping levels of zero 
and 10 /cm have been calculated using Monte Carlo techniques 
[13]. Velocity-field data up to electric fields greater than 
100 kV/cm has been obtained experimentally [143. This data can 
be combined with the low-field curve for numerical analysis of 
GaAs MESFET's. An analytical form of these curves, such as 
[15] 

v(E) = 4.5xl06 • E l+l'5(S/7> ( 1 2 ) 

l+4.725(E/7) 

where E is in the unit of kV/cm, may also be used for GaAs. 
Values of diffusivity both parallel and perpendicular to the 
electric field are available [16,17]. A modified Einstein 
relation can again be used to extrapolate high-field diffusivi-
ties to the low-field region. 

For InP, experimental [18,19] and theoretical [13] 
velocity-field curves of electrons are available. A useful 
analytical form is: 

v(E) = 2 . 8 x l 0 6 « E 1 + Q - 3 2 W \ 2 )
7
2 ' 7 (13) 

1+(E/12)J,/ 

where E is in units of kV/cm. Some diffusivity values have 
also been presented [19]. 

3. SPECIAL PROBLEMS IN BIPOLAR SIMULATION 

In a bipolar transistor the flow of both electrons and 
holes must be considered. While the nature of bipolar device 
fabrication and design has permitted solutions in only one 
dimension with reasonable accuracy in the past, VLSI bipolar 
transistor behavior and that of parasitic bipolar devices as 
in, e.g., CMOS latchup paths, will not permit this. 

SEDAN is a popular simulator that solves the 1-D equa­
tions numerically: LUSTRE is designed for use with microcomput­
ers, so does not use a completely numerical approach: the basic 
equations were first manipulated analytically, subject to some 
simplifying assumptions, with the resulting expressions forming 
the basis of a simplified numerical solution. 

SEDAN solves the basic set of equations straightforwardly 
for both carrier types. The Einstein relationship is used to 
express diffusion constant in terms of mobility, thus preclud­
ing the proper description of electron/hole transport in high-
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neia regions, such as depletion layers. The boundary condi­
tions at the emitter, base, and collector contacts for this 
bipolar simulator differ, of course, from those for MOSFET 
simulators: charge neutrality is taken at the e,c contacts, and 
Boltzmann statistics are used so that the potential and carrier 
concentrations at these contacts can be calculated from the 
collector-emitter voltage and the net impurity concentrations. 
The majority carrier quasi-Fermi level at the base contact is 
required to be equal to the base-emitter voltage, so the minor­
ity carrier density at this contact can be expressed in terms 
of applied potential. In addition to special mobility models, 
SEDAN also incorporates expressions for carrier recombination 
and bandgap narrowing. 

4. SOLUTION METHODS 

4.1 finite. Elements y_s.. Finite. Differences 

The set of continuum equations that describe the physics 
of a problem may be transformed into a set of discrete alge­
braic equations for computer solution using either finite ele­
ment (FE) or finite difference (FD) methods. Each method may 
be advantageous in certain applications. 

Finite difference methods result in solutions for the phy­
sically continuous variables as specific values at the discrete 
points which make up a mesh. Continuum derivatives are 
replaced with standard finite difference approximations, with 
the result that the equations are discretized. The discrete 
variables are the values of the solutions at the mesh points. 
This method is conceptually simple since the finite difference 
derivative approximations are ready available and easy to 
understand, being based on the definition of the derivative 
itself in the limit of small mesh spacings. A price is paid 
for this simplicity, however: the resulting FD program can be 
very difficult to generalize since the difference relations 
become very unwieldy if they are applied to non-rectangular 
meshes. Local adjustment of the mesh spacing results in com­
plicating the finite difference approximations, and implementa­
tion of higher-order (e.g., cubic or exponential) differences, 
necessary to reduce the number of mesh points needed, can be 
cumbersome. FD methods are thus characterized by simplicity 
obtained at the expense of generality. 

The finite element method is based on an entirely dif­
ferent concept. First, the geometric region representing the 
device is divided into small subregions known as finite ele­
ments. Next, the continuum functions representing the solution 
are taken to have some simple form within each element, typi­
cally resulting in a global solution that is piecewise linear, 
cubic, etc. Finally, the original continuous physical equa­
tions are used to define an equivalent integral formulation. 
As a result, the problem is reduced to either minimizing a 
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functional over a trial space of functions, or forcing a resi­
dual function to be orthogonal to a trial space. The former 
problem is obtained if the original equations resulted from a 
variational principle; the latter problem is typically obtained 
where the original equations are differential equations and no 
equivalent variational form is known. The trial space is the 
space of functions which possess the assumed piecewise charac­
teristics of the solution, which has a finite number of degrees 
of freedom. Associating discrete variables with these degrees 
of freedom yields a discrete system of algebraic equations 
suitable for computer solution. 

While the basis of the FE method is more complicated than 
that of the FD method, once the necessary software is developed 
the generality is much greater. Since the shapes of the finite 
elements are arbitrary, FE algorithms work well for various 
arbitrary mesh structures, permitting great flexibility in the 
definition of device geometries, mesh refinement for improved 
computational efficiency, etc. Implementation of general boun­
dary conditions is also straightforward; boundary condition 
restraints are often simply built into the definition of the 
trial function space, and the stability of the solution algo­
rithm is often improved by the integral approach. Higher-order 
methods require only a modest increase in complexity, since 
only the piecewise characteristics of the solution are changed. 
However, the FE method achieves its generality at the expense 
of an increase in complexity. 

The use of finite differences is appropriate for simple 
(1-D) problems and 2D programs intended to simulate specific 
geometries, while finite elements should be useful for programs 
that must be flexible in dealing with complex, particularly 
non-rectangular, systems. 

Hybrid FE/FD approaches have been proposed [7], but seem 
to have inherited the complexity of the FE method without 
yielding any advantages. 

k-1 Packaged Numerical Analysis Software 

Powerful software packages now available for the numerical 
solution of systems of algebraic equations can permit device 
physicists to spend more time improving the physics of models 
than developing numerical solution algorithms. UNPACK, a 
package for the solution of (small) linear systems, and MIN-
PACK, a corresponding package for nonlinear systems, are useful 
for 1-D simulations. In addition, EISPACK, a package for 
eigenvalue problems, is potentially applicable to special 1-D 
quantum problems. SPARSPAK, a package for large sparse linear 
systems, is especially useful for simulations arising from 
either FE or FD methods. Finally, MATLAB, an interactive 
matrix package, is useful for rapid testing of proposed solu­
tion algorithms. LINPACK, EISPACK, MATLAB, and MINPACK are 
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available from the Argonne National Laboratory (USA); SPARSPAK 
is available from the University of Waterloo (CANADA) Dept. of 
Computer Science. 

These packages, written in standard FORTRAN, solve linear 
or nonlinear systems of algebraic equations. The user can 
start with the system of coupled partial differential equations 
above. Using either FD or FE methods, these equations are con­
verted into discrete algebraic equations which can then be 
solved by the matrix packages. The discrete variables used 
might be potential, carrier concentration, etc, at each mesh 
point, corresponding to continuum potential, etc. as a function 
of space and/or time. Space and, for transient simulations, 
time must be discretized. Nonlinear discrete algebraic equa­
tions can be linearized with a Newton-like method, and solved 
iteratively using the linear equation solvers listed above. For 
small problems (e.g., 1-D simulations) MINPACK represents an 
alternative to this strategy. The packages mentioned here are 
only a representative sample of those now available. 

5. SPECIAL PROBLEMS IN SUBMICRON DEVICE SIMULATION 

1.2.. Transport on. a Small (<Lju) £c_al£ 

The concept of equilibrium velocity-field curves is mean­
ingless if the device is small enough that a carrier can pass 
through it in a time sufficient for only a few energy-exchange 
processes ("collisions") to occur. The carrier velocity may 
then exceed, on a transient basis, its steady-state value. 
This transient carrier transport (TCT), may lead to extremely 
fast devices. 

The major TCT phenomenon is velocity overshoot, i.e., the 
transient rise of a carrier's velocity to a value above that 
predicted by the velocity field curve. Overshoot is a complex 
phenomenon related to the quality of the collisions as much as 
to their quantity; in GaAs and InP, overshoot arises from the 
different effects that collisions have on energy and on momen­
tum, and the time required for both of these quantities to 
simultaneously reach values proper for intervalley transfer to 
occur within the conduction band. In Si, overshoot arises 
because scattering rates are inversely proportional to energy 
[13]. Transient effects in Si which are collision-dominated 
damp out very fast due to the strength of its acoustic phonon 
and equivalent intervalley scattering processes; in GaAs, how­
ever, peak velocity can reach almost 7x10 cm/sec and TCT can 
last over distances up to a half-micron or so. 

TCT calculations for electrons in Si and GaAs at 300 
degrees K are summarized in Figure 1, which may be used to 
determine what types of devices should be designed on the basis 
of TCT. If a device includes a region in which a particular 
combination of field and distance over which that field occurs 
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lies underneath the relevant curve, then the device should be 
affected by TCT. For example, the average electric field in a 
GaAs MESFET with a 6V drain-gate potential difference and 1.0 
micron drain-gate space is about 60kV/cm, which lies above the 
GaAs curve; the distance is, in the device, so large compared 
to the duration of the transient at this field that TCT is of 
little importance. If VD„ is reduced to IV, however, TCT can 
affect electron velocity over the whole drain-gate space. 

1.1 Device Simulation Incorporating X£l 

Devices in which transient carrier transport occurs may be 
simulated using two-dimensional Monte Carlo methods. Even when 
relatively large approximations are made, however, these tech­
niques are extremely costly. Further, many of the important 
materials parameters which must be used in this calculation are 
only approximately known, and hardly seem to justify the use of 
such a costly technique. Methods which reduce the description 
of the carrier dynamics to the "hydrodynamic" equations, which 
can be derived from the Boltzmann equation, have been used for 
the TCT problem. However, most who have used this approach 
have been forced to make rather severe approximations. 

Alternatively, a semiclassical model based on the 
Boltzmann transport equation has been shown to be useful for 
two-dimensional simulations in which electron energy, rather 
than, say, velocity, is determined over the volume of the dev­
ice. Local current flow can then be derived from that energy 
[20]. This method was originally used to analyze GaAs and Si 
MESFETs, in which carrier flow could be considered one-
dimensional over the region where the electric field was 
greatest. Figure 2 is an example of the differences in 
behavior of a short-channel device as revealed by a traditional 
simulation and by a simulation that can incorporate transient 
carrier transport, A new finite-element MOSFET simulation pro­
gram utilizing this technique, and in which the one-dimensional 
approximation must necessarily be removed, is now being 
developed as a logical extension of the original MESFET stu­
dies. 

The direct energy-calculation method greatly facilitates 
the calculation of electron temperature, a quantity which can 
be used to gain insight into device noise problems, and also 
into mechanisms of failure related to electron heating. Useful 
results can be obtained even if electron temperature calcula­
tion is decoupled from the electric field calculation: electric 
field profiles can be obtained using a simple two-dimensional 
device simulator such as MINIMOS or GEMINI, and an approximate 
solution of the BTE in terms of electron energy can then be 
obtained using this field. The BTE for the energy of electrons 
in silicon can be written in the following one-dimensional form 
provided the heating is primarily caused by a one-dimensional 
field in the direction of transport [20] : 



3*- = -J-(eE (x) - V f > (14) 

dx 5 x v ( X ) T 
x w 

where r is the averaged electron energy relaxation time. For 
more exact solutions this one-dimensional approximation should 
be removed. Electron temperature may be obtained from Equation 
(14) using the approximation 

W ="?-kT (15) 
I e 

To determine the electron energy distribution along the 
length of a device, the longitudinal electric field must be 
determined, and T (x) can then be evaluated using Simpson's 
rule. 

We have utilized the method outlined above to determine 
electron temperature profiles in normal and lightly doped drain 
(LDD) MOSFET structures. These results can be used to gain 
insight into the design of devices immune to provide an indica­
tion of the hot-electron gate current injection and other hot 
electron effects. Electric field profiles were obtained for 
these calculations from GEMINI. Figure 3 shows the longitudi­
nal electric field and corresponding electron temperature pro­
files for both a standard MOSFET and for an LDD device [21]. 
The reduction in the electric field in the LDD device and asso­
ciated reduction in T are apparent. 

6. NEW MATERIALS and NEW DEVICE STRUCTURES 

Our understanding of the physics of such materials as InP 
or GalnAs, and our capabilities for simulating such device 
structures as heterojunction FETs and bipolar devices, trench 
memory cells or even just very-short-channel MOSFETs, are being 
pressed to keep up with the technologists' abilities to make 
the devices themselves. Device simulation must, then, proceed 
in new directions in order to remain useful in the prevention 
(and analysis) of expensive fabrication mistakes. 

6..1 Materials PjAej: than S_i ox EflAfi. 

The accuracy of simulations of devices made of such 
materials as InP, GalnAs, AlGaAs, etc. will be limited by that 
of the materials parameters used. Some materials data even for 
silicon, particularly that which describes inversion-layer 
transport, is not yet fully understood. However, enough has 
been measured or calculated for InP and some variations of Gal­
nAs [22] to permit either traditional or more modern types of 
simulations to be performed for devices made of these materi­
als. 
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£.2 HSH QsaJsS. Structures 

Some programs—such as IBM's finite-element FIELDAY—have 
no problems in dealing with interesting geometries in inhomo-
geneous media. However, the finite-difference programs that 
are available are constructed to deal with particular 
geometries, such as planar MOSFETs, and are not so easily modi­
fied. If, however, the geometry of interest has a planar free 
surface and represents only a modification of symmetry, some 
finite-difference programs may be adapted by manipulating dop­
ing profiles. 

An example of the usefulness of such an approach is shown 
in Figure 4, which shows a set of equipotentials obtained for a 
trench memory cell from a GEMINI which has been modified to 
utilize quite flexible junction profiles [233. Such simulations 
were used to determine maximum permissible bias levels, 
subthreshold performance, amount of charge stored, and a meas­
ure of hot electron gate currents as functions of dimensions 
and substrate doping, as part of the design of this cell. 

Heterostructure devices (HEMT, TEGFET, MODFET, etc.) 
should be treatable as logical extensions of currently familiar 
devices. The correspondence between MOS and modulation-doped 
structures has already been pointed out [24] and the correspon­
dence between governing equations of these devices is clear 
[25]. However, the dimensions of the regions in which carriers 
are confined in these devices, as in modern Si MOSFETs, are 
small enough that quantum effects should be properly considered 
[26], Confinement of carriers in very small regions leads to 
quantization of allowed energy levels, creating sub-bands 
within the valence and conduction bands. The attendant problems 
of band population distribution and inter-band scattering have 
been a subject of discussion for some time, but little is yet 
understood of the extend to their importance in submicron MOD­
FET or MOSFET simulation. 

&..1 12 Structures: Circuit Simulation Approach 

Simulation of three-dimensional structures using standard 
techniques can consume considerable CPU time. For some prob­
lems, such as those of CMOS latchup simulations and some bipo­
lar logic circuits, a cheaper alternative is desirable. 3D 
simulation may be performed with an acceptable level of accu­
racy by breaking the three-dimensional region of interest into 
a three-dimensional network of one-dimensional devices. The 
active elements may be interconnected with current-modulated 
resistances. Circuit simulation programs may then be used to 
determine the overall performance of the three-dimensional cir­
cuit. [29,30]. This method may well prove very useful for the 
approximate determination of properties of large three-
dimensional systems. 
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7. SUfoiiARY 

Semiconductor device simulation techniques using materials 
properties that are taken as decoupled from the action of 
charge carriers within the device itself can only with diffi­
culty, and the use of nonphysical approximations, be used to 
simulate the behavior of submicron-scale devices. At this 
scale, transient transport and quantum effects must be taken 
into consideration. Energy-transport techniques may be more 
efficient for such device simulation than any other method at 
this time. Large three-dimensional problems may be efficiently 
simulated as three-dimensional networks of one-dimensional dev­
ices, but the limits to the accuracy of this approach in 
specific problems have not yet been established. 
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FIGURE 1 

10 20 50 4 0 50 SO 
AVERAGE ELECTRIC FIEUD, kV/cm 

Regions of operation of Si and GaAs devices in which velocity 
overshoot may be an important factor in determining device per­
formance. In each case the regions below the curves are those 
in which overshoot should be considered. For examplet 
overshoot should be incorporated into the design analysis of a 
GaAs "active length" (channel, perhaps) is e.g. 0.6 micron, and 
the average electric field in the channel is 5 kV/cm; overshoot 
would probably have negligible effect in such a device if the 
average field were greater than about twelve kV/cm. 
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FIGURE 2 

Average e lec t ron ve loc i ty and energy as funct ions of d is tance 
along the channel of a 0.25 micron gate GaAs MESFET, using both 
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model. Channel th ickness = 0.12 microns, doping = 1.5 X 10 . 
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E l e c t r i c f i e l d ( a ) and e l e c t r o n t e m p e r a t u r e ( b ) p r o f i l e s fo r a 
s t a n d a r d MOSFET and an LDD d e v i c e . The p a r a m e t e r s of t h e s e 
d e v i c e s a r e : 

15 3 
S t a n d a r d : S u b s t r a t e doping 3x10 /cm 

n+ s o u r c e and d r a i n doping 3x10 /cm 
Drawn c h a n n e l l e n g t h = 1.4 m i c r o n s 
E f f e c t i v e c h a n n e l l e n g t h = 0 . 9 m i c r o n s , e x t e n d i n g t o 

d i s t a n c e c o o r d i n a t e 1.95 m i c r o n s 
S/D j u n c t i o n d e p t h = 0 .25 mic rons 
Oxide t h i c k n e s s = 15 nm. , , , 

LDD: n - l o w - f i e l d r e g i o n doping 3x10 /cm , e x t e n d i n g from 
d i s t a n c e c o o r d i n a t e 1 .95 m i c r o n s t o 2 . 1 m i c r o n s . 

In bo th d e v i c e s on ly t h e r e g i o n n e a r t h e d r a i n j u n c t i o n i s 
shown, and t h e drawn g a t e m e t a l ends a t c o o r d i n a t e 2 . 2 m i c r o n s . 
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FIGURE 4 

Typical equipotentials in a sample trench-capacitor memory cell 
under development for memories at the 16mB/chip scale. An 
etched trench at the left contains one capacitor plate, made of 
polysilicon; the other plate is the vertical n+ diffusion. The 
drain of the access transistor is the horizontal n+ diffusion 
at the upper right. Each small division = 0.5 micron. 


