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ABSTRACT 

New developments and results in the area of process simulation are 
reviewed. These results have increased significantly our understanding of 
the underlying processes that govern integrated circuit (IC) fabrication 
techniques, 

I. Introduction 

With the increasing demand for larger circuit complexities, the process steps 
necessary to fabricate chips have become very complicated. In order to keep the die 
area constant ( 1 cm2 ), the staggering increase in complexity has been achieved mainly 
by scaling the vertical and lateral dimensions of the various building blocks of the 
integrated circuit (IC). 

The use of computer programs to aid process engineers in the development of new 
semiconductor technologies has become a worthwhile alternative to the conventional 
trial-and-error experiments. The results of computer programs, if properly used and 
analyzed, can have a significant impact on the design optimization cycle by drastically 
reducing the time needed to develop a process [l] . 

Modern processes allow the classification of IC fabrication steps into three areas: 1) 
Thermal processing and doping; 2) pattern definition (lithography); and 3) pattern 
transfer (etching and deposition). Table 1 summarizes the various process steps that fall 
into these categories. 

This paper was written as an update to an earlier tutorial on process simulation [2] 
in order to focus on recent developments in this field. It is interesting to follow the 
development of process simulation during the past few years te.g.3l. This rather new 
field of applied computer modeling is a typical example of an demand-driven discipline 
which is constantly refined to keep up with current developments in technology. 
Compared to device simulation, process modeling lags behind several years. While 
device simulation programs have reached a level of sophistication which allows even 
prediction with a high probability of success, process simulation often relies on 
empirical simplifications to model a certain problem. Device physics is a established 
field. A large amount of knowledge has been accumulated since the invention of the 
transistor. Today, we know in detail the basic equations, mechanisms and phenomena 
governing current transport in silicon devices. The situation is completely different for 
process simulation. For most of the process steps in Table 1, our knowledge of the 
underlying physical and chemical processes is still unsufficient to attempt first principles 
solutions. 
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For this paper, I have chosen to concentrate on three different areas with new 
developments during the past three years, 

(1) Ion Implantation 

Ion implantation is the main workhorse of the semiconductor industry. It is 
used to selectively dope active areas with a controlled amount of doping. In 
section II, 1 shall present some new results on implantation modeling and profile 
construction. 

(2) Oxidation-related Phenomena 

The understanding of the atomic processes governing diffusion of substitutional 
impurities (As, B, P, and Sb) has increased considerably. Section II! will focus 
on recent results on oxidation-related diffusion phenomena. 

(3) Optical Lithography 

Optical lithography has traditionally dominated the pattern definition field, and 
it will certainly continue to do so til! we have reached feature sizes of 0,5/im. 
The methods used for pattern definition have evolved over the past fifteen years 
form optical contact printing of negative resists via a transition phase with 1:1 
projection printing to direct step on wafer (DSW) (10:1 or 5:1) projection 
printing. In section IV, I shall summarizx the basic theory of optical projection 
printing. 

Section 5 contains a discussion of the future of process simulation. 

II. Ion Implantation 

The successful fabrication of scaled devices depends strongly on the ability to 
predict as-implanted profile distributions as well as the associated electrical and 
mechanical effects for given conditions. 

A classification of all important theories and calculational procedures is shown in 
Table 2 [4], which also summarizes major developments in the field. The pioneering 
work of Lindhard and coworkers [19-21] on the transport equation formalism has been 
refined by many authors. To my knowledge, all published range distributions have 
been derived from the original LSS approach. However, all these methods have the 
severe restriction that they require the assumption of a homogeneous target. Therefore 
they are no applicable to simulate multilayered targets. Furthermore, these methods 
cannot be extended in a straightforward manner to simulate multi-dimensional 
problems. 

1. Monte-Carlo Calculations and Ion Scattering 

With the availability of high speed digital computers, ion transport calculations 
using the Monte-Carlo technique have become very popular. The program 
MARLOWE, developed by Oen and Robinson [22,23], treats the scattering process by 
exactly evaluating the scattering integral for the scattering angle in the center-of-mass 
(CM) system 

CO 

e - x - 2 p / r (0 

'• r 2 [ r _£kI_4]T 
Er rl 

where p is the impact parameter, V(.r) is the interaction potential between the incident 
ion ( mass M\, charge Z\) and the target ions ( mass M2, charge Z2), r0 is the 
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distance of closest approach, and Er — E/il+M^M^) is the energy in the CM-system. 

MARLOWE is capable of simulating arbitrary structures (amorphous, 
polycrystalline and crystalline). From my experience, I can highly recommend this 
excellent code, whose only drawback lies in the required computing resources. 

For process simulation purposes, a variety of different models have been developed: 
i) the local structure model [17], ii) the dense gas model [24], and iii) the liquid 
structure model [25], The major differences between these approaches lie in the 
treatment of nuclear scattering, the representation of the target structure and the 
formulation of the mean free path. 

Using the local structure model, Biersack and Haggmark have developed the 
program TRIM, which has been refined by Macrander [18] and adapted to a vector 
processor by Petersen et al. [26]. Miyagawa and Miyagawa [25] and Adesida and 
Karapiperis [27] have developed the programs SASAMAL and PIBER based on the 
liquid model. 

The difference between TRIM and the other codes lies in the treatment of nuclear 
collision. In TRIM, the impact parameter p is determined from a random number 
0^R„ < 1, and the angle 0 is calculated from 

i U - . W - , - 0 (2) 
' 0 J Er 

where Vir) is the Molicre from of the Thomas-Fermi potential 

Vir) - ^±<f(-) (3) 
r a 

with the screening radius a, and 

<j>ix) - 0.35exp(-0.3.*;) + 0.55exp(-1.2x) + 0.1exp(-6x) (4) 

The energy tranfer T to the target atom in a single collision is determined by 

4M,M2 0 
T - — E sin11— (5) 

(A/, + A/2)2 2 
In the dense gas and the liquid model, T is calculated from the differential nuclear 

cross section 

daiE,T)-wa2~-filJ) (6) 

It 2 

which depends only on a single parameter t 

r 2 - « i n | - (7) 
2 

where e is the reduced energy 

l ' ^ E " M^M 7°7 *E (8> 

\_ 
with the electric charge q. The universal scattering function fit1) depends on the 
form of the potential Vir) in Eq. (3). It can be represented by 



429 

1 , 7 - m 

f(t2)-X j - (9) 

[1 + (2\tl-m)i]" 

Several authors have published values for the fitting parameters in the above equation. 

Figure 1 compares mean projected ranges Kp and standard deviations ARp for "B 
implanted into silicon over a wide range of energy. The B—Si ion-target combination is 
a severe test for any code due the small mass ratio Mx/M2- Both TRIM and 
SASAMAL (with two different cross-sections) fit the experimental data very well. The 
analytical results are data obtained from the tables published by Gibbons et al. [28] 
and Brice [29], 

For mass ratios M\/M2>\, nuclear stopping completely dominates the slowing 
down process. Miyagawa and Miyagawa [25] have compared range data for 122Sb with 
various computer programs (Fig. 2), Best agreement is obtained for SASAMAL with 
the Kalbitzer-Oetzmann [32] cross section. All other calculations underestimate the 
range by 20%. This result is not surprising, since the experimental data were the origin 
of the improved fitting to the parameters of the /-function, 

Monte-Carlo calculations have been particularly successful in the calculation of 
multi-dimensional ion distributions, Mazzone and Rocca [34] have recently published 
results on 31P implantations into amorphous and crystalline silicon. They have extended 
the original treatment by de Salvo and Rosa [35] to allow simulations for arbitrarily 
shaped targets. 

Figure 3 shows ion distributions in the vicinity of a Si—Si02 step obtained for an 
amorphous silicon substrate. Each dot presents the final coordinate of a number of ions 
in a pixel. The more interesting case occurs in the case of a crystalline silicon substrate. 
Figure 4 should be compared with Fig, 3, The incidence conditions are the same for 
both results, and in both cases the beam is tilted 7.5° off the <100> axis. The results 
in Fig. 4 represent the situation for a low dose implant which leaves the lattice 
undisturbed. 

Boltzmann Transport Equation 

Ion implantation can be visualized as a transport problem with the motion of ions 
during their slowing-down to zero energy. A collection of particles with velocity v at 
coordinated x can be described by the distribution function F(v,x) 

dN - F(v,x)d3v d*x (10) 

and the probability for a particle with velocity v to scatter into the velocity element 
[v',v' + d\] during the time dt is given by 

K(y-*y) rfV dt - NM do(\-*v')dl (11) 

where K(\—v') is the transition rate, Ns is the density of scattering centers and da is 
the differential cross section. The average number of ions scattered into a differential 
phase space element is described by a Boltzmann Transport Equation for the 
distribution function 

9F(v,x) „ „ , , 
• V v.VF(v.x) — 

dt 
(12) 

Ns j [<Mv'—V) |V'| F(V',X') - <Mv—v')|v| F(v,x) j + (?(v,x) . 

The quantity Q is a generation term which allows particles to be created from rest. 
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This accounts for recoils generated by primary particles. If more than one projectile 
type is involved, subscripts should be added in Eq. (12). 

Integration of this equation is carried out starting from z—0 (the sample surface) 
and integrated for z > 0 with the initial condition 

F(v,0) - ND S(v-v0) (13) 

where No is the total dose and v0 is the the initial velocity of the incident beam. 

The integration of Eq. (12) requires that the motion of each particle in the 
distribution is confined to a finite number of discrete states. 

Each state is defined by an energy Et (0 < Et < E0) and an angle Oj. In the work 
of Christel, Gibbons, and Mylroie [ 11,12], Bj has been limited to a range between 0 
and TT/2. This restriction removes backscattered particles from the final distribution, 
and it fails in the case of very light projectiles impinging on heavy targets 
(M\lMi « 1). To keep computation times reasonable, 150 discrete elements (15 
equally spaced energy states and 10 angular intervals) were used. The step size Az was 
set to 1A. Giles and Gibbons [13] have developed a multipass algorithm where the 
region of interest is scanned iteratively until all particles have come to rest. At the end 
of the first pass, they obtain a concentration profile together with a set of matrices of 
backscattered ions. The second pass, however, is made from the target interior towards 
the surface, thus accounting for the motion of all ions backscattered in the original 
pass. Adding the stored backscatter distribution to the original profile, one proceeds 
until all ions have stopped. For multilayered targets, BTE calculations have been very 
successful in the simulation of recoil effects, Giles and Gibbons [13] have modelled a 
low-energy !1B-implant (E — I5keV) through a 100A layer of Au into Si. Figure 5 
presents UB profiles in the Au-Si target as obtained by the multipass algorithm. While 
about 20% of the original dose are lost due to n B backscattering in the Au layer, the 
dose in the Si is slightly increased from 71% to 75% due to "B ions that were initially 
backscattered in the silicon and then returned due to backscattering at the Au-Si 
interface. 

Pearson Distributions 

The Pearson system of univariate distributions [36] can be classified as solutions to 
the equation 

(b0+blX+b2x
2) ^L _ (x-a)f (14) 

ax 
where fix) is the frequency function and x — z—z is the distance from the mean z. 
The coefficients bh /—0,1,2, can be expressed in terms of the moments )ik — < x * > — 
J xkfdx, k—\, . . . ,4. The four constants a,bt can be represented by the first four 
moments 
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-7iA/?p(fe+3) 
a - - (15) 

A 

bg _ - (A*,)»(4ft-37ft ( 1 6 ) 

- (2f t -3 T ?-A*, ) ( n ) 

/! - 10/82—12-yf—18 (18) 

Different distributions are classified according to the behavior of the roots of 

b0+blx+b2x
1 - 0 (19) 

In Table III, fix) is the solution to Eq. (14) and A: is a normalization factor imposed 
by the requirement that 

ffbc)dx-\ (20) 

OQ — max(0, x-) 
a0-0 
0 0 - 0 
a 0 - 0 

, «i - x+ 

,a\-x+ 
,a\-°° 
, <3 | — X-

(Type I) 
(Type III) 
(Type IV) 
(Type VI) 

where 

This table also includes important conditions for various parameters (expressions in 
round brackets ( . , . , . ) ) which have to be fulfilled to produce profiles with physical 
meaning. 

Until recently, one-dimensional ion distribution profiles have been fitted by Pearson 
IV distributions, Winterbon [37] has reported that for high-energy implants, Pearson 
VI distributions seem preferable. 

Petersen et al. have extended Winterbon's work by analyzing the As, B, P and Sb 
profiles obtained from Monte Carlo simulations [26]. Figure 6 is a plot of 
K — b\l4b$bi as a function of energy for n B —* Si. The parameter b2 has a zero 
around E — 100 keV forcing a singularity in K . For energy values below this 
singularity, the boron profile apparently is better fitted by a Type I Pearson 
distribution, while for large energy values it is better fitted by a Pearson VI 
distribution. These high energy data are equivalent to Winterbon's result [37] and 
strongly support his findings. 

Corresponding results for 31P, 75As and 122Sb are given in Fig. 7. For each element, 
the parameter K is outside (0,1) and the roots of Eq. (19) are real. For all cases shown, 
a Type 1 distribution would be adequate to fit these ion ranges. 

III. Oxidation-Related Diffusion Phenomena 

In the recent past, new results on the effect of oxidation on the diffusion of 
substitutional dopants have greatly increased our understanding of the nature of point 
defects in silicon. Since impurity diffusion, together with ion implantation, is an 
integral process step of any modern technology, these results will have an important 
impact on the next generation of process simulators. 
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In analogy to metals, it was believed for a very long time that vacancies are the 
only point defect species in thermal equilibrium. To my knowledge, all important 
process simulators (SUPREM [38], BICEPS [39], ICECREM [40] etc.) incorporate 
diffusion models built on the vacancy model, originally developed by Fair[41]. A 
straightforward application of this model, however, cannot explain several important 
experimental facts, such as the high concentration diffusion of phosphorus, the diffusion 
behavior of all common dopants in Si in the presence of oxygen, and corresponding 
nitridation experiments. 

Coexistence of vacancies (V) with silicon self-interstitials (I) was suggested by 
Seeger and Chick[42] and Hu[43l. The difficulties involved in finding the real nature of 
the dominant point defect in Si can be understood by looking at the silicon self-
diffusion coefficient [44] 

DSD - \460 exp(:=^rL) (20 
kT 

The large activation enthalphy of 5eV sets the upper limit for the ratio of the point 
defect concentration in thermal equilibrium to the atomic density of silicon to 10-6, 
which eliminates the use of quenching experiments and absolute measurements as 
experimental techniques. At this point in time, no direct measurements of this kind 
exist for Si which would allow an unambigous interpretation. Progress in the 
understanding of Au diffusion in Si and oxidation-enhanced (OED) and -retarded 
(ORD) diffusion of group III and V dopants in Si, however, have shed new light at 
this twenty-five year old puzzle. 

Accounting for both silicon self-interstitials and vacancies, Hu[43] has assumed that 
in thermal equilibrium, the diffusivity Ds of a substitutional dopant is the sum of 
components involving I and V contributions. The diffusion process via silicon self-
interstitials is commonly called interstitialcy mechanism. Thus, 

Ds ~ D) —'- + D'v — (22) 

cf cy 
where D\ and D'v are the intrinsic diffusivities of the impurity atom, and Cx is the 
concentration of the corresponding point defect where superscripts denote equilibrium 
values. 

Figure 8 shows values for the components of Ds calculated from experimental 
results[44], Self-interstitials contribute more to diffusion for T> 1000°C, and vacancies 
become dominant at lower temperatures. 

Defining the fractional interstitialcy component 

and point-defect supersaturation ratios (where x denotes either V or 1) 

Eq. (22) can be rewritten as 

D' 

Sx-
Cx - C? (24) 

Cfg CP 
(25) 

and the normalized diffusion enhancement, Aox can be defined 
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D 
• f,S, + {\-f,)Sv (26) 

where Dox is the diiTusivity under oxidation conditions. The effective diffusion 
coefficient in a specified oxidation time is obtained by time-averaging 

<D> - — JD dt (27) 

The excess silicon self-interstitial concentration is related to the oxide growth rate via 

dx 
C, - CI* • dt 

(28) 

where A'1 is a constant and n — 0.3 to 0.5. Inserting this equation and Eq. (26) into 
Eq. (27), the diffusivity can be calculated if the diffusion times and temperatures are 
given. Values for / / can then be obtained by comparing Eq. (27) with experimental 
results for the diffusion coefficient obtained under oxidizing conditions. 

For As, B and P, Matsumoto et al. [45] have performed this fitting experiment to 
the experimental results of Ishikawa et al. [ 46]. Figure 9 summarizes the temperature 
of//, which can be expressed as 

J A s - 42 exp 

fB — 860 exp 

/ P — 156 exp 

-0.542 
kT 

-0.829 
kT 

-0.666 
kT 

(29a) 

(29b) 

(29c) 

Similar data have been presented by other authors [47]. For a comprehensive summary, 
I refer the reader to the review article by Tan and Gosele [44]. 

Contrary to As, B, and P, Sb exhibits a more complicated diffusion behavior. 
Figure 10 presents long time, high temperature results for Aox. We notice that for these 
conditions, Sb has an ORD behavior. For short diffusion times, however, Sb data do not 
follow a constant / / relationship, which indicates that Cv/C\? has a strong influence on 
the diffusivity. 

Antoniadis and Moskovitz [50,51] have investigated the time-dependence of the 
diffusivity. From their results in Fig. 11, it may be deduced that the diffusion of Sb in 
Si is dominated by a vacancy mechanism. Further results can be found in the original 
reference. 

IV, Two-Dimensional Image Calculations for Optical Lithography 

In projection printing, the image of the object — the mask — is projected onto the 
wafer through a high resolution optical lens, whose demagnification can vary between 
one to twenty times. The complete optical system is usually diffraction-limited. 

The deviations from the ideal diffraction-limited system are measured by the mutual 
transfer function (MTF) of the lens. The MTF includes all aberrations such as 
spherical aberration, coma, astigmatism and field curvature. For a mask consisting of 
lines and spaces of spatial frequency £,,, the MTF is defined as the ratio of the mask 
modulation to the image modulation 

MTF(£„) - Image 

Mask 
(30a) 
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where 

\M 'max * min /-»/\i \ 
MMask - — - — (30b) 

'max ' *min 

and an equivalent expression for Mimage, The factors /max and /min are the maximum 
and minimum intensities, respectively. For an idealized optical system, the angle 6 
between the maximum diameter of the exit pupil and the image plane determines the 
resolution. This is described by the numerical aperture, NA, defined by 

NA - n sinfl (31) 

or the effective //number, 

- I L_ (32) 
number 2NA 

where n is the refractive index of the surrounding medium. The quality of the image 
depends critically on the illumination conditions. The illumination condition of most 
practical interest is partially coherent illumination. Partial coherence is quantified by 
the ratio 

" - TTT (32) 

NA0 

where NAC and NA0 are the numerical apertures of the condenser and objective lens, 
respectively. The parameter a describes the degree of filling of the entrance pupil of 
the imaging lens by the source. It is the ratio of the imaged source at the entrance 
pupil to the pupil diameter. An incoherent source is a source of infinite dimension 
(a — °°), whereas a coherent source (<r — 0) is a point source. Over the last few years, 
the direct calculation of intensity distributions of lens images has advanced 
considerably. 

Contrary to the near-field diffraction problems in the case of proximity printing, 
which have only been solved for a few simple cases, a rigorous theory is available to 
calculate the imaging properties of lenses for arbitrary objects. The basic theory of 
imaging with partially coherent light was developed by Hopkins [52] and Wolf [53] in 
the early 1950's. Several authors especially Kinzly [54], Watrasiewicz [55], Nyssonen 
[56], and Considine [57] simplified the original theory. Kintner [58], Offner [59] and 
Hershel [60] applied the theory to projection printing. Lacombat and Dubroeucq [61] 
and Tigreat [62] have studied step-and-repeat systems with partially coherent 
illumination. O'Toole and Neureuther [63] have incorporated the work of Kintner [58] 
into the program SAMPLE [64], While one-dimensional calculations are relatively 
straightforward, the calculation of the image of an arbitrary two-dimensional mask is a 
tedious task. Griffing and Lorensen [65] have simulated two-dimensional geometries 
for incoherent illumination. To my knowledge, Lin's pioneering work [66] is still the 
only calculation for arbitrary masks with partially coherent illumination. He has 
studied non-periodic diffraction-limited images in and out of focus with different 
partially coherent illumination conditions. He has assumed circular pupils, non-
reflective substrates, absorption-free photoresists and quasi-monochromatic illumination. 
His calculation starts from the mutual intensity distribution of illumination. Assuming 
a uniform circular source, the mutual intensity of the light incident on the object is 
given by [67] 

\x0-xo,yo-yo) - /0" (33) 

where x0 and y0 are coordinates in the object plane, Jt is the Bessel function of the 
first kind of order one and 
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v - -Z- V (x0-x0)
2 + (y0-y0)

2ncsin dc (34) 
A 

The factor JQ is the intensity (assumed uniform) of the incident light, and «,.sin 0C is 
the numerical aperture of the condenser at the side of the imaging lens. 

The factor lQ in Eq. (33) is taken to be one at the transparent part of the mask and 
zero at the opaque parts. The transfer function K is expressed by an integral and 
evaluated numerically. It is given by 

K ix0-x0,y0-y'0) - £ / / < ? { 6XP Uk
sl

S~r)] } dfr (35) 

where k — 2TT/X, G is the aberration function of the imaging lens, r and s are the 

distances from the object and image points, (xoj'o,0) and (x0,y0,z0), to the point 
(£,»?,$ in the pupil plane of the imaging lens. In the absence of aberrations, G is set to 
one. Defocus is incorporated in s. The expression for K in Eq. (36) can be simplified 
using the paraxial approximation and integration 

i 

K(x0-x0,y0-y0) - — j - exp 
nsinO 
2nX2 (nsinO)2 J J0(up)exp pdp (36) 

where JQ(UP) is the Bessel function of the first kind of order zero, and ns.50is the 
numerical aperture of the imaging lens. The variables « and v are normalized 
dimensionless coordinates for x and z of the form 

I*- n sin 6 [ G t 0 - x > + (y0-yl)2\ ' (37) 

v-2Z-in sin 0)2z (38) 
A 

The calculation of the diffraction image involves the solution of a four-dimensional 
integral. Several simplifications have been employed by Lin to reduce the amount of 
computation. 

Figure 12a shows calculated diffraction images of a 1 /im x 1,2 #xm contact hole 
and a 1 /urn x 4 fim rectangular opening. An aberration-free lens with NA — 0.32 has 
been used for the calculations. The illumination is treated as monochromatic at 
X — 4047A. This figure compares the effect of illumination coherence on the image. 
The focal plane is specified by z — 0, which means that z — 2 nm is equivalent to a 
2 /im focus error from either side of the focal plane. Each contour in the figure is 
corresponds to a number which indicates the intensity level. There are a total of 
twenty levels ranging from 0,1,2, .,., 1,2, ..., to 9. Each level is 1.5 db from the next 
level. Comparing the case of an infinite a (total incoherence) and a—0, the line edges 
of the image are less wavy but the image contrast is smaller. Furhermore, the total 
coherence case has a larger depth of focus. 

Figure 12b compares calculated diffraction images for a lens with NA — 0.32 at 
X — 4047A to a lens with NA — 0.16 at X — 2200A. For both cases, the coherence 
factor is a — 0.78. The result for the shorter wavelength and smaller aperture at a 
defocus of z — 4 fim is similar to the other case at a defocus of z — 2 /im, indicating 
that wavelength reduction is more preferable than a higher NA. This result has 
important implications for the further development of optical lithography. 
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V. Conclusions and the Future of Process Simulation 

The past three years have brought significant progress in process simulation. In this 
paper, I have reviewed several new developments in ion implantation, diffusion and 
lithography. One of the important yet unresolved modeling problems remains the 
domain of two- ( or even three-) dimensional oxidation on nonplanar surfaces. While 
first steps towards a more complete understanding of the oxidation process have been 
made [69-72], no model has been published yet which would allow a first-principles 
solution of oxidation phenomena on silicon substrates of arbitrary shape. Essentially all 
work has been restricted to the analysis of bird's beak geometries (e.g. [70,71]). It is 
without question, however, that local oxidation isolation schemes are not appropriate for 
scaled VLSI devices. Buried oxide isolation schemes offer many advantages to modern 
MOS processing. Apart from the obvious use as isolation structures between active 
device regions, trench isolation schemes are prime candidates for scaled CMOS 
technologies or DRAM storage elements. 

Experimental studies of the oxidation of nonplanar silicon surface have been 
performed by Marcus and Sheng [73] as a function of temperature. Figure 13 shows 
TEM photographs of cross sections through oxidized silicon bars bounded by <100> 
and <110> planes. Oxidation was performed in wet 0 2 at 900° (a), 950" (b), 1000" 
and 1100°C (d). The main results are the differences in oxide thickness for the 
different temperatures and plane orientations, the decreased oxide thickness at 950°C 
and 1050°C at the inner corner due to the reduced availability of oxidizing species, and 
the decreased oxide thickness at the upper corner due to the influence of local stress on 
the local solubility of oxygen in these regions. The effect of stress on oxidation kinetics 
is reduced for higher temperatures, confirming earlier results [69]. Similar results have 
been obtained for the oxidation of polysilicon gates [73]. 

The above result on twodimensional oxidation is just one example were further work 
is needed. Other examples would be the simulation of short time diffusion effects in 
rapid thermal annealing (RTA) experiments, better modeling of etching kinetics and 
deposition phenomena, and self-annealing phenomena in ion-implantation. 

The development of future technologies will have to rely more and more on 
computer simulations in order to cut development costs. Major efforts will be necessary 
to make process simulation an equal partner to actual experiments. The following list 
contains several points which will have to be addressed in the near future: 

Better understanding of basic processes 

Complete process models 

Better and faster numerical models 

Improved user interfaces with enhanced graphics capabilities 

Knowledge-based databases 

Process simulation has a very bright future. The next few years will certainly bring 
solutions to most of the unresolved problem areas I have mentioned in this paper. 
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Thcrma 

Table I - IC Process Steps 

Processing and Doping 

Epitaxy 
on Implantation 
Predeposition 

Annealing 
Drive-In 

Oxidation 

Pattern Definition 

Optical Lithography 
Electron Beam Lithography 

Ion Beam Lithography 
X-Ray Lithography 

Pattern Transfer 

Wet Chemical Etching 
Ion Milling 

Reactive Ion Etching 
CVD 

Evaporation 
Sputtering 

Tabic II 

Classification of Theories 

Method 

Transport 

Theory 

Inter­
mediate 

Methods 

1st order 

2nd order 

3rd order 

integral 

Equation 

Two Step 
Method 

Semi-Monte-

Carlo Method 

Monte Carlo 

RP 

0 

o 

0 

0 

0 

0 

0 

0 

Aflp 

X 

o 

° 
o 

0 

0 

0 

0 

Range 

7 ,0 -

X 

* 

o 

0 

0 

X 

X 

0 

Atf 

X 

o 

A 

o 

0 

A 

X 

0 

Multi­
layer 

X 

X 

' 

* 

0 

A 

0 

0 

Damage 

X 

* 

X 

o 

0 

0 

0 

0 

Reference 

15] 

[6] 

17] 

[8-10] 

[11-13] 

[14,151 

[16] 

[17,18] 

o; calculated, A; possible, x; impossible or inaccurate 
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Table III 

Pearson Distributions for Ion Ranges* 

Type I (incomplete /3-function of Is' kind) 

f(x) = k(x-xjm>(x+-x)m\ 

1 6,(1+262) 
W|,2 ' 262 2b24d ' 

-6+V7 
2b2 

(x-^x <_v+, w i > 0 , w 2 >0) 

Type III (incomplete P-function) 

f(x)-k exp(-±)(x+-x)m , 
b\ 

x+ - -b0/bx , 

m - 1 + b0/bf, (6 ,<0, - o o < x < x + , x+>0, m >0) 

Type IV 

+ 26, 
fix) - k\b0+bix+b2x

2\2b' exp 

(.d < 0, - 7 - < -5 /2 , - ° ° < x < +00) 
262 

tan 
26 2*+61 

V=J 

Type VI (incomplete ^-function of 2nd kind) 

fix) — /cGc_—x)m,(jf+—jc)m\ x± 

1 6,(l+262) 

- 6 , ± yfd 

26, 

Mi 2 " TI -+~ F T - > (-°°<x<Jf_<Jf+ , /H]>0, m\+m2 < -1) 
26 2 Ib-pJd 

k — normalization constant, d — b\ — 46Q62 
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HOFKER et al. (EXPT.) 
o RYSSEL eta l . (EXPT.) 
^ TRIM 

SASAMAL (KO) 
SASAMAL (WSS) 
ANALYTIC 

50 100 150 

ENERGY (keV) 

2 0 0 

Fig. Mean projected rande Rp and standard deviation ARp for 5 - 200 keV n B 
implanted into amorphous Si. SASAMAL [25] with Kalbitzer- Oetzmann 
132] cross section (solid curve) and WSS cross section [33] calculations 
are compared with experimantal results by Hofker et al [30] (closed 
circles) and Ryssel et al. [31] (open circles) and with TRIM calculations 
117]. The analytical results of Gibbons et al. [28] and Brice [29] are 
identical and represented by the dashed line. (From Miyagawa and 
Miyagawa [25]). 
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Fig. 5 Implanted profile for a "B implant (15 keV, 10!5cm 
Si at a dose of 10 ,5cm-2 (From Giles and Gibbons [ 

"2 into 100A of Au on 
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Fig. 6 K- bf/4b0b2 as a function of energy for !IB — Si (From Petersen et al 
[26]). 
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Fig. 8 Components D,C'q and DvCtf of Si self-diffusion versus \/T calculated 
from the diffusion of Au into disiocation-frce Si and DyCf? calculated 
from the diffusion and precipitation of Ni in dislocated Si. (From GSsele 
and Tan [44]). 
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Fig. 9 Temperature dependence of the fraction od intcrstitialcy diffusion of As, 
B, and P in Si. (From Matsumoto et al. [45]). 
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Fig. 12 Diffraction image for NA — 0.32, X - 4045A at a - 0 and a — °°. 
The parameter z indicates the distance from the focal plane, (a) 
Image in focus (z - 0) and out of focus (z - 2 ^m) of a 
1 nm x 1.2 fim contact hole and a 1 Mm x 4 /an rectangular 
opening, (b) Image of two parallel rectangular openings of uneven 
lengths, for /V/l - 0.32 at X - 4045A and NA - 0.16 at 
X - 2200A. (From Lin [66]). 
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Fig. 13 Transmission electron Micrographs of cross sections of silicon samples 
oxidized in wet 0 2 at (a) 900°C, (b) 950X, (c)1000oC, and (d) 1100X. 
(From Marcus and Sheng [73]). 


