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5600 MD Eindhoven, The Netherlands 
Summary 

In this paper we consider a class of iterative methods (pro
jection methods) for the solution of linear equations. This 
class contains among others Conjugate Gradients, Bi-Conjugate 
Gradients and Orthomin. It appears that a variant of 
Bi-Conjugate Gradients (CG-Squared), when used with a 
so-called incomplete line block factorization as precon
ditioning, is a robust and efficient method for the solution 
of the nonsymmetric linear systems arising in the numerical 
solution methods for the coupled semiconductor equations. 

1. The Problem 

In this paper we shall be concerned with the (approximate) so
lution of linear equations that arise when solving a dis-
cretised semiconductor problem. More specifically the 
semiconductor equations under consideration is the following 
set of three coupled equations on^ctH^. 

(1.1a) div (- egrad V)-P(V,!j)p,(t)n)EF1(V,(()p,!j)n)=0 

(1.1b) -div upp(V,(()p)grad <|)p+R(V,<j)p,<|>n) = F2 (V,<|>p,<t>n) =0 

(1.1c) -div (unn!V,(l)n)gcad$n-R(V,!J)p4n) = P3(V,(|)p4n)=0 

where 

(1.1d) p(V,0p.4)n)=q(p(V,(t)p)-n(V,<t>n)+D) 

and 

PtV^p^niexpUq/KT) (<j,p-V)) 
(1.1e) 

n(V,(()n)=niexp((q/KT) (V-<()n) ) 
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R is the recombination and may be of SRH or Auger type CIO], 
With the given boundary values, (1.1) is discretised with the 
Gummel-Scharfetter scheme on a (distortion of a) rectangular 
grid on fi(see [83, [9J). 

This result in a system of, say n, equations 

(1.2a) P(w)=0 

where 

(1.2b) F(w)=(F1(w),F2(w), ,Fn(w)) 

and 

(1.2c) w=(w1,w2,...,wn) 

the components w^ of the solution of (1.2) are approxations to 
nodal values of V, $„ and <j>n of (1.1). 

We solve problem (1.2) by a continuation method (see C73 , 
[9]). Each nonlinear subproblem is solved by a damped Newton 
method. This means that we have to solve a sequence of pro
blems of the type 

(1.3) J(w).dw=-F(w) 

for the unknown vector dw. 
Here J(w) is the Jacobian of F in the (given) point w. The 
numerical solution of problems of type (1.3) will be the topic 
of this paper. 
(We note however that the methods considered are applicable to 
a much wider class than (1.3).) 

It is easily verified that for most discretisations of 
Poisson's equation (1.1a) only, (1.3) is of the type 

(1.4) Ax=b 

where A is a positive definite matrix (b, xe(Rn). However, when 
dealing with two or three coupled equations in (1.1), (1.3) is 
of the type 

(1.5) Bx=d 

where B is nonsymmetric. 

Especially linear problems of this last type will be con
sidered. 
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Some notational conventions. 
The solution of (1.4) and (1.5) will be denoted by x*(which is 
assumed to exist and to be unique). Matrix A of (1.4) will al
ways be assumed to be symmetric (not necessarily positive de
finite, unless explicitly stated). 

n: number of equations and unknown in (1.4,5) 

(x,y) is the I2 innerproduct in 1Rn (x,y)=x'y 

(x,y)̂ |= (x,Hy) for any symmetric nxn matrix H. When H is posi
tive definite, (.,.)u is an innerproduct. 

2. Some Iterative Methods (for Linear Equations) 

In this section we present a class of iterative methods for 
(1.4,5) known as projection methods. We first give a general 
description of such methods. 

2.1 The General Projection Method 

let <. ,.> be an innerproduct in TKn. Let the vectors 
PQ,P1, p]<_i satisfy 

(2.1.1a) <Pi,Pj> =0 (i*j) j(Pi*0). 

Let 

(2.1.1b) Kk=span{po,Pi,..•,Pk-l) 

and let 
k-1 

(2.1.1c) yk= £L ajPj 
j=0 

satisfy 

(2.1. Id) yk=arg min <x*-y,x*-y> . 
yeKk 

Hence yk is the projection of x* onto Kk (w.r.t. <.,.>). 
If yk^x*, choose pk-£0 such that 

(2.1.1e) <pk,pj>=0 (Vj<k) 

Let Kk+1=span{pn,Pi,...,pk} and 

(2.1.1f) yk+1=ar9 m i n <x*~y»x*-y>. 

yeKk+1 
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Then, obviously, 

{2.1.1g) k 

yk+1= H CjPj 
j=0 

where 

(2.1.1h) ak=<x*,pk> / <pk,pk> (=<x*-yk,pk> / <pk,pk> ; 

because of (2.1.1c) and (2. Lie)). 
This means that 

(2.1.H) yk+1=yk+akPk-

We give some relations that are often used in projection 
methods. Since x*-yk+-|j.Kk+i, we have 

(2.1.2) <Pj,x*-yk+1>=0 WJSk). 

For most projection methods, p0, pi are chosen such that 

(2.1.3) Kj = {y|y=ffj (B)d,7ij any polynomial of degree ij}. 

More specifically, 

(2.1.4a) p0=d 

and 
k-1 

(2.1.4b) pk=qk- J_ 3k jPj 
j = 0 ' 

where ^keKk~Kk-1 o f (2.1.3) and 

(2.1.4c) Bkfj=<gk/Pj>/<PjrPj> 

Hence Pk satisfies (2.LJe), Pk^O, and PfcEKk of (2.1.3). 
In this case, by (2.1.2) and (2.1.4b) 

(2.1.5) ak=<x*-ykrPk>/<Pk'Pk>=<x*-yk'qk>/<Pk Pk> 

It is easily verified that whenever Kk=Kk_i (of (2.1.3)), then 
x*eKk_i and hence yk-i=x*. So obviously x*=y^, for some l£n. 

We give two examples. The first choice is 

(2.1.6a) 9k=rk 
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where 

(2.1.6b) rk=d-Byk 

This only works when a^-i^O (otherwise rk=rk_ •)£!<)< of (2.1.3)). 
In that case, when B is symmetric w.r.t. <.,.> 

(2.1.7a) gk< j=<rk,pj>/<pj,pj>=<x*-yk,Bpj>/<Pj,pj> = 0 (Vjftk-2) 

since x*-ykiKk and Bpj£Kj+2 

Hence 

(2.1.7b) Pk=rk-Bk,k-lPk-1 

and (see (2.1.5)) 

(2.1.7c) 6k)k_i=<x*-yk,ak_1Bpk_1>/<x*-yk_1,rk_1> 

= -<x*-yk,rk>/<x*-yk_1 ,rk_.,> 

since x*-ykiKk and rkeKk. 

Another choice is 

(2.1.8) qk=BPk-1 (k>0). 

(This choice works also when ak_-j=0.) 

In this case, when B is symmetric w.r.t. <.,.> 

(2.1.9a) Bkjj=<Bpk_1,Pj>/<pj,pj>=<pk_1,Bpj>/<pj,Pj> 

= 0 (for all j£k-3), 
since pj,_•]JLKj<_•] and Bpj£Kj+2 

Hence 

(2.1.9b) Pk=Bpk_i-Bk)k_iPk_i-Bk!k_2Pk-2-

2.2 ORTHOMIN 

In [1, 123 method (2.1.1) is proposed for problem (1.5) where 
<.,.>= (.,.)BTB 

Then 

yk=arg min(d-By,d-By) 
yeKk 
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and P O » P 1 / - - shou ld s a t i s f y 

( 2 . 2 . 1 ) { B P i , B P j ) = 0 ( i * j ) , 

p k i s d e t e r m i n e d by ( 2 . 1 . 4 , 6 ) 

Hence ORTHOMIN can be d e s c r i b e d as f o l l o w s : 

( 2 . 2 . 2 a ) S t a r t : yo=0; r 0 =d , p 0 = r 0 ; k=0. 

w h i l e ( | | r k | |>e ) 

do 

( 2 . 2 . 2 b ) a k = ( r k , B p k ) / ( B p k , B p k ) ( c f . ( 2 . 1 . 5 ) ) 

( 2 . 2 . 2 c ) y k + i = y k + a k P k 

( 2 . 2 . 2 d ) r k + 1 = r k - a k B p k 

k 
( 2 . 2 . 2 e ) P k + i = r k + 1 - 2 l 6 k + 1 j j p j ; B k + 1 j j = ( B r k + 1 , B P j ) / ( B P j , B p j ) 

j - 0 
k=k+1 (c f . ( 2 . 1 . 7 a ) ) 

od 

2 .3 ORTHOMIN (m) 

For k large, the amount of work involved for (2.2.2e) may be 
prohibitive. Therefore a variant of (2.2.2) is often used, for 
which (2.2.2e) is replaced by 

k 
(2.2.2e') Pk+i=rk+1- £ Bk+1,jPj 

j=k-m 

Here m£l is given (generally 1im£IO). 

It is obvious that when B is nonsymmetric in most cases this 
variant is not a projection method. 

2.4 Conjugate Gradients 

The method of conjugate gradients for (1.4) can be derived 
from section 2.1 by putting 
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<.,.>={.,.) . 
A 

Hence, with the notation of 2.1 

yk=arg min (b-Ay,b-Ay) 

y£Kk A"1 

and 

!Pi,APj)=0 (for all i^j). 

pk is determined by (2.1.4,6). Since A is symmetric w.r.t. 
<.,.> (2.1.7b) holds. 

We give here a version of the method. 

(2.4.1a) Start: yn=0 ; rg=b , Po=ro ; k=0. 

w h i l e ( l | r k | |>e) 

do_ 

( 2 . 4 . 1 b ) a k = { r k , r k ) / ( p k , A p k ) ( c f . ( 2 . 1 . 5 ) ) 

(2.4.1c) yk+1=yk+akPk 

(2.4.1d) rk+1=rk-akApk 

(2.4.1e) Pk+1=rk+1+6kPk ;6k=(rk+1'rk+1)/(rkrrk) 
(cf. (2.1.7c)) 

k=k+1 

od 

2.5 Bi-Conjugate Gradients 

In C4*J,C3 3 the following generalisation of the CG-method was 
proposed, which may be applied to problems of type (1.5). 

Let 
/B 0\ 

(2.5.1) A= , A£L(7R2n) , 
1̂ 0 B ^ 

and 

(2.5.2) b=(d,d)T. 
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Consider 

(2.5.3) Aw=b 

where 

w=(x,x)T, x,x£fRn, 

then (2.5.3) is equivalent to 

Bx=d 

and 

BTx=d. 

Define the "innerproduct" [.,.] in 1R2n by 
Cz-j ,z2] = ziQz2 (z-j ,z2£$?n) , where 

In is the n-dimensional unity operator. 
[.,.] is a symmetric and linear form, but not positive defi
nite ( Cz,z]40 for some z^0,zelR2n). 
A is symmetric w.r.t. [.,.]. 

The method of bi-conjugate gradients is derived by applying 
method (2.1.1) to problem (2.5.3) where 

<zi,Z2>=Cz^,A~1Z23. 

pk is determined by (2.1.4,6). Since A is symmetric w.r.t. 
<.,.>, (2.1.7b) holds. The method is usually given as follows 

(2.5.5a) Start y0=0 (y0=0); r0=d, r0=d, Po=rn» P0=rn; 

k=0. 

w h i l e (|rj{| |>e) 

do 

( r k , r k ) 
( 2 . 5 . 5 b ) 0^= (c f . ( 2 . 1 . 5 ) ) 

<Pk'BPk) 

( 2 . 5 . 5 c ) y k + i = y k + a k P k 

Cyk+1=?k+ akPk) 
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(2.5.5d) rk+1=rk-akBpk 

(2.5.5e) Pk+i=rk+1+Bkpk (rk+1,rk+1) 
; Bk= (cf.(2.1.7c)) 

Pk+1=rk+1+6kPk <?
k,rk) 

k=k+1 

od 

Some remarks 

2.5.1 It is easily verfied that 

rk=*k(B)r0 »
 ?k=*k!BT)r0 

(2.5.6) 

Pk=9k(B)r0 , Pk=6k(BT)r0 

where <j)k and Qk are polynomials of degree k. 

2.5.2 When B is symmetric, then method (2.5.5) is equivalent 
to the CG process. 

2.5.3 Czi,A~^zz] is not an innerproduct. It is therefore clear 
that many theoretical aspects of the CG process do not 
hold for the bi-CG process. 

2.5.4 In particular, the method breaks down when 

(pk,Bpk)=0 or (rk,rk)=0 (and rk*0) . 

See Z62 and C33 on these aspects. 

2.5.5 However it can be shown that whenever the bi-CG process 
does not break down, and x*€Kk=span{pn,Pi,..,pk_i } then 
yk=x* (see C13, p. 390]). 
Hence bi-CG is a "quasi-projection method". 

2.6 CG-Squared (CGS) 

The determination of f k and pk in (2.5.5) is only needed for 
the calculation of ak and 0k. In particular, the matrix-vector 
product BTpk of (2.5.5d) is only needed for an innerproduct. 
In C11D a variant of bi-CG is derived that does not need such 
matrix vector products. 



276 
Since the derivation of CGS is just a manipulation on the for
mulae of (2.5.5) we shall only indicate how it is done. By 
(2.5.6) 

(rk,rk) = (<t>k(B)r0,$k(B
T)ro) = (<i>k2{B)r0,r0) 

and 

(Pk'BPk) = ( B6k 2W r0' r0)-

*Pk) From (2.5.5) recursions in 6k
2(B) rg(=rk) and <|)k

2(B)ro( = 

that use 0k(B) cj)k (B)r0(=ek) and $k(B)0k_i(B)r0{=hk) can be de
rived. For these last two terms also a recursion can be de
rived. 
With yk satisfying rk=d-Byk the following process can be de
rived 

(2.6.1a) Start: y0=0 ; ?n=d, Pn=rQ ;k=0. 

while (||rk|>e) 

do 

(2.6.1b) ak=(r0,rk)/(r0,Bpk) 

(2.6.1c) hk+1=ek-akBpk 

(2.6.Id) rk+1=rk-akB(ek+hk+l) 

(2.6.1e) yk+1=yk+Ck(ek+hk+l) 

(2.6.If) 3k=(r0,r"k+1)/(r0,fk) 

(2.6.1g) ek+1=rk+1+Skhk+1 

(2.6.1h) Pk+1=ek+1+Bk(hk+1+ekPk) 

k=k+1 

od 

In (2.5.5d) rk=<j>k(B)d and in (2.6.7d) r"k=!})k
2 (B)d (for the same 

plynomial $ k). 
Consequently, if yk*=x* for some k*, then yk =x*. 

Furthermore, if | cj)k (B)d |« d, then in many cases ||(()k
2(B)d|| may 

be expected to be even smaller (see also C11D). Hence one may 
expect CGS to converge faster than bi-CG. 
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In this section we present the two preconditionings we used 
with the iterative methods of the previous section to solve 
the linear problems. 

3.1 A "block-Gauss-Seidel" Preconditioning 

In problems involving the continuity equations the unknowns 
may be ordered in such a way that 

'D1 01,1 " 2 > 2 | 

B=| L 2 > 1 D2 U2j3j 

LL3,1 L3,2 D3 

where D-j ~ V, D2 ~ (J)p and D3 ~<|>n. 

Hence B=L+D+U, and (1.5) is equivalent to the following pre
conditioned system 

(3.1.1) C(L+D)" 1 B( I +U)" 1D (I+U)x=(L+D)_1d 

in short 

(3.1.2) By=d. 

It is easily verified that (L+D)~^q (for some q) can be ob
tained by a forward substitution process, requiring L-U decom
positions of D£ (i=1 ,2,3). 
In section 4 we present some testresults for iterative methods 
of section 2 that are applied to the preconditioned system 
(3.1.2). 

3.2 An Incomplete Line-block Factorization 

Assume that the unknowns are ordered in such a way that 

D1 "I 

L2 D2 

"N-1 

DN 
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in short 

B=L+D+U. 

For example on (grids that are distortions of ) a rectangular 
grid, many box-schemes, difference schemes and finite element 
schemes allow such orderings. In such cases the blocks B^ are 
associated with mesh-columns. From now on, we assume the grid 
to be (a distortion of) a rectangular grid. 

In many cases Matrix B of type (3.2.1) can be decomposed as 
follows. 

(3.2.2) B=(L+A)A-1(A+U) 

where A=diag (A-],...,AW) 

satisfies 

-1 
(3.2.3) Aj=Dj-LjAj_1Uj_1 (j=2,3, ..,N) 

In [5], [2] a factorization of B is proposed where 

( 3 . 2 . 4 ) B£(L+A)A-1(2+U) 

w i t h 

( 3 . 2 . 5 ) _ _•, 
A j =Dj-Sp j (L 1 Aj_ 1 Uj_ 1 ) ( j = 2 , 3 , . . , N ) 

r . ^ 
[0 i f dk>1=0 

where Spj(C)kj XEJ 
tc^ i otherwise 

for an m x m matrix C=(c]< i) 

Hence 2j has the same sparsity pattern as Dj. 
Since Lj and Uj_i are sparse, it is obvious that not all 
elements of Aj_-j need to be calculated. We only need the main 
diagonal and some co-diagonals. These can be calculated quite 
easily in many cases. 
For most discretisations used on (distortions of) rectangular 
gids, Dj has a tridiagonal structure, so that 



279 

( 3 . 2 . 6 ) 

t h a t i s : Aj= Aj+9jk+Uj 
where ^ j / 9 j and Uj a r e 3 x 3 m a t r i c e s . 
Aj may be decomposed into 

-1 
( 3 . 2 . 7 a ) A j = ( A j + r j ) r j ( r j + U j ) 

where 

( 3 . 2 . 7 b ) T j=d i ag ( Y 1 f . . , Y M ) 

and 

Yl =6l 
(3.2.7c) _! 

Y 1 = 9 J - X J Y j - 1 U j - 1 ( j = 2 , 3 , . . M ) . 

Le t 

- 1 
( 3 . 2 . 8 ) Sj=Aj 

t h e n , wi th S j = ( s ^ j j , 

we have ( see [5] ) 

( 3 . 2 . 9 a ) s = Y _ 1 

-1 -1 -1 
(3.2.9b) Sk k =Y K +Yk . u

k s k + 1 k+1-Xk+1-Yk 
-1 

s k , k - l = - s k . k - 1 + 1 - A k - l + l Y k - l 
( 3 . 2 . 9 c ) _i 

s k - l , k = - Y k - l - u k - l s k - l + 1 , k 
( l = 1 , 2 , . . k - 1 ) 
( k = M - 1 , M - 2 , . . , 1 ) . 

Remark: When dealing with a five-point discretisation, Lj and 
Uj are diagonal and only 3 diagonals of Sj need to be calcu
lated. For the usual nine-point scheme, 7 diagonals of Sj are 
needed for (3.2.5). 

We resume: 

B=(L+A)A-1(A+U) 
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where 

A=(A+nr1(r+ui 

is a block-diagonal matrix (cf. (3.2.2), (3.2.4) and 
(3.2.7)). The following equation is now equivalent to (1.5) 

cr(r+u)-1(L+A)-1B(A+u)-1(A+r)D(A+r)-1(A+u)x= 
(3.2.10a) 

n r + u ) - 1 (L+A)-1d 

in short 

(3.2.10b) §y=cL 

In the next section we present some results with the precon
ditioned problem (3.2.10). 

3.3 A Simplification of the Line-block Factorization 

Instead of (3.2.4,5) we shall also consider the follwing 
factorization of B, 

(3.3.1) B2!L+2)2H (Z+U) 

where 

(3.3.2) A^Dj (j=1,2,..,N). 

Obviously, (3.3.1,2) is a cheaper preconditioning than 
(3.2.4,5). 

4.1 Testresults 

In this section we present testresults for some combinations 
of iterative methods of section 2 and preconditionings of 
section 3, when applied to linear problems arising in the cal
culations on a CMOS Inverter. The device is described below 
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Figure 4.1 
CMOS INVERTER 

c 1 

c2 

C3 

c4 

c5 

C6 

c7 

C8 

(p-source): 

(p-gate): 

(p-drain): 

(n-drain): 

(n-gate): 

(n-source): 

(p-substrate): 

(n-well): 

4)p=5,<t̂ 1=5 , charge neutrality (c.n); 

V=5; 

4p=0, 4>n=0, c.n.; 

<tp=0, <th=0, c.n.; 

V=-5; 

*p=-5/ <t>n=-5' c-n-J 

Vs-5' ^=-5' c-n-.-

$p=4. 275 — > 4.2725, 4>n=4.275 —»4.2725, c.n. 

The top-dope values are given per p3. 

The Gummel-Scharfetter scheme {[83) was used on a nonuniform 
48 x 30 mesh. This resulted in a system of equations 

(4.1) F(w)=0 

with 

(4.2) F:1Rn—4lRn. 

In this case, n=4128. 
We obtained solutions of problem (1.1) for different values of 
*p and $n at the contact cs, by means of a continuation method 
(see [7]) . 
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Each nonlinear subproblem was solved by Newton's method (with 
damping) , that is, for each subproblem a sequence wk had to be 
generated, where 

(4.3) wk+1=wk+Xkdw|< 

^k suitably chosen 

and 

(4.4) J(wk)dwk=-F(w
k) (k=0,1,...). 

Table 4.1 gives results for one such Newton process. In that 
case w° is the solution of (4.1) with 4>p=0n=4.275 at eg and F 
(and J) are associated with 4>p=4>n=4.2725 at eg. It took 4 
Newton iterations for the stopping criterion to be satisfied. 
The tables below give results for several methods to solve the 
linear problems (4.4). The CPU times given include the time 
needed for assembling the Jacobian J and righthandside F, etc. 

Table 4.1 
Testresults for CMOS-inverter (one Newton process) 

method 

(2.3)?m=10 

(2.3);m=10 

(2.6) 

(2.6) 

preconditioning 

(3.1) 

(3.2) 

(3.1) 

(3.2) 

Direct (MA32AD, Harwell) 

CPU-time 

failure* 

failure* 

445s 

230s 

720s 

•Table 4.2 
Testresults CMOS-inverter (first Newton-correction) 

method 

(2.6) 

(2.6) 

preconditioning 

(3.2) 

(3.3) 

# iterations 

23 

44 

Direct (see above) 

CPU-time 

88s 

120s 

188s 

* see next section. 
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5. Conclusions 

Method (2.3) is not a projection method. It is our experience 
(see e.g. Table 4.1) that this causes the process to "con
verge" very slowly for several problems. That is, very small 
correction steps are being taken while the approximations are 
far away from the solution. (A similar behaviour can be 
observed in gradient methods for linear problems.) The 
"quasi-projection method" CGS (2.6) does not have this 
draw-back. Although there is hardly any theoretical evidence, 
it appears to work very well, when used with the proper type 
of preconditioning. 

Both preconditionings (3.1,2) appear to work well although the 
"Block-Gauss-Seidel" preconditioning (which requires 3 L-U 
decompositions of n/3 x n/3 matrices) is much more expensive. 

In conclusion, CGS with line block preconditioning is a very 
robust combination to solve the linear problems arising in 
coupled semiconductor problems. It is also much more efficient 
than Gaussian elimination. 
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