
267

Preconditioned Iterative Methods for Nonsymmetric Linear
Systems

C. den Heijer

ISA-ISC-TIS/CARD, Bldg SAQ-2
Nederlandse Philips Bedrijven B.V.
5600 MD Eindhoven, The Netherlands
Summary

In this paper we consider a class of iterative methods (pro
jection methods) for the solution of linear equations. This
class contains among others Conjugate Gradients, Bi-Conjugate
Gradients and Orthomin. It appears that a variant of
Bi-Conjugate Gradients (CG-Squared), when used with a
so-called incomplete line block factorization as precon
ditioning, is a robust and efficient method for the solution
of the nonsymmetric linear systems arising in the numerical
solution methods for the coupled semiconductor equations.

1. The Problem

In this paper we shall be concerned with the (approximate) so
lution of linear equations that arise when solving a dis-
cretised semiconductor problem. More specifically the
semiconductor equations under consideration is the following
set of three coupled equations on^ctH^.

(1.1a) div (- egrad V)-P(V,!j)p,(t)n)EF1(V,(()p,!j)n)=0

(1.1b) -div upp(V,(()p)grad <|)p+R(V,<j)p,<|>n) = F2 (V,<|>p,<t>n) =0

(1.1c) -div (unn!V,(l)n)gcad$n-R(V,!J)p4n) = P3(V,(|)p4n)=0

where

(1.1d) p(V,0p.4)n)=q(p(V,(t)p)-n(V,<t>n)+D)

and

PtV^p^niexpUq/KT) (<j,p-V))
(1.1e)

n(V,(()n)=niexp((q/KT) (V-<()n))

268
R is the recombination and may be of SRH or Auger type CIO],
With the given boundary values, (1.1) is discretised with the
Gummel-Scharfetter scheme on a (distortion of a) rectangular
grid on fi(see [83, [9J).

This result in a system of, say n, equations

(1.2a) P(w)=0

where

(1.2b) F(w)=(F1(w),F2(w), ,Fn(w))

and

(1.2c) w=(w1,w2,...,wn)

the components w^ of the solution of (1.2) are approxations to
nodal values of V, $„ and <j>n of (1.1).

We solve problem (1.2) by a continuation method (see C73 ,
[9]). Each nonlinear subproblem is solved by a damped Newton
method. This means that we have to solve a sequence of pro
blems of the type

(1.3) J(w).dw=-F(w)

for the unknown vector dw.
Here J(w) is the Jacobian of F in the (given) point w. The
numerical solution of problems of type (1.3) will be the topic
of this paper.
(We note however that the methods considered are applicable to
a much wider class than (1.3).)

It is easily verified that for most discretisations of
Poisson's equation (1.1a) only, (1.3) is of the type

(1.4) Ax=b

where A is a positive definite matrix (b, xe(Rn). However, when
dealing with two or three coupled equations in (1.1), (1.3) is
of the type

(1.5) Bx=d

where B is nonsymmetric.

Especially linear problems of this last type will be con
sidered.

269

Some notational conventions.
The solution of (1.4) and (1.5) will be denoted by x*(which is
assumed to exist and to be unique). Matrix A of (1.4) will al
ways be assumed to be symmetric (not necessarily positive de
finite, unless explicitly stated).

n: number of equations and unknown in (1.4,5)

(x,y) is the I2 innerproduct in 1Rn (x,y)=x'y

(x,y)̂ |= (x,Hy) for any symmetric nxn matrix H. When H is posi
tive definite, (.,.)u is an innerproduct.

2. Some Iterative Methods (for Linear Equations)

In this section we present a class of iterative methods for
(1.4,5) known as projection methods. We first give a general
description of such methods.

2.1 The General Projection Method

let <. ,.> be an innerproduct in TKn. Let the vectors
PQ,P1, p]<_i satisfy

(2.1.1a) <Pi,Pj> =0 (i*j) j(Pi*0).

Let

(2.1.1b) Kk=span{po,Pi,..•,Pk-l)

and let
k-1

(2.1.1c) yk= £L ajPj
j=0

satisfy

(2.1. Id) yk=arg min <x*-y,x*-y> .
yeKk

Hence yk is the projection of x* onto Kk (w.r.t. <.,.>).
If yk^x*, choose pk-£0 such that

(2.1.1e) <pk,pj>=0 (Vj<k)

Let Kk+1=span{pn,Pi,...,pk} and

(2.1.1f) yk+1=ar9 m i n <x*~y»x*-y>.

yeKk+1

270

Then, obviously,

{2.1.1g) k

yk+1= H CjPj
j=0

where

(2.1.1h) ak=<x*,pk> / <pk,pk> (=<x*-yk,pk> / <pk,pk> ;

because of (2.1.1c) and (2. Lie)).
This means that

(2.1.H) yk+1=yk+akPk-

We give some relations that are often used in projection
methods. Since x*-yk+-|j.Kk+i, we have

(2.1.2) <Pj,x*-yk+1>=0 WJSk).

For most projection methods, p0, pi are chosen such that

(2.1.3) Kj = {y|y=ffj (B)d,7ij any polynomial of degree ij}.

More specifically,

(2.1.4a) p0=d

and
k-1

(2.1.4b) pk=qk- J_ 3k jPj
j = 0 '

where ^keKk~Kk-1 o f (2.1.3) and

(2.1.4c) Bkfj=<gk/Pj>/<PjrPj>

Hence Pk satisfies (2.LJe), Pk^O, and PfcEKk of (2.1.3).
In this case, by (2.1.2) and (2.1.4b)

(2.1.5) ak=<x*-ykrPk>/<Pk'Pk>=<x*-yk'qk>/<Pk Pk>

It is easily verified that whenever Kk=Kk_i (of (2.1.3)), then
x*eKk_i and hence yk-i=x*. So obviously x*=y^, for some l£n.

We give two examples. The first choice is

(2.1.6a) 9k=rk

271

where

(2.1.6b) rk=d-Byk

This only works when a^-i^O (otherwise rk=rk_ •)£!<)< of (2.1.3)).
In that case, when B is symmetric w.r.t. <.,.>

(2.1.7a) gk< j=<rk,pj>/<pj,pj>=<x*-yk,Bpj>/<Pj,pj> = 0 (Vjftk-2)

since x*-ykiKk and Bpj£Kj+2

Hence

(2.1.7b) Pk=rk-Bk,k-lPk-1

and (see (2.1.5))

(2.1.7c) 6k)k_i=<x*-yk,ak_1Bpk_1>/<x*-yk_1,rk_1>

= -<x*-yk,rk>/<x*-yk_1 ,rk_.,>

since x*-ykiKk and rkeKk.

Another choice is

(2.1.8) qk=BPk-1 (k>0).

(This choice works also when ak_-j=0.)

In this case, when B is symmetric w.r.t. <.,.>

(2.1.9a) Bkjj=<Bpk_1,Pj>/<pj,pj>=<pk_1,Bpj>/<pj,Pj>

= 0 (for all j£k-3),
since pj,_•]JLKj<_•] and Bpj£Kj+2

Hence

(2.1.9b) Pk=Bpk_i-Bk)k_iPk_i-Bk!k_2Pk-2-

2.2 ORTHOMIN

In [1, 123 method (2.1.1) is proposed for problem (1.5) where
<.,.>= (.,.)BTB

Then

yk=arg min(d-By,d-By)
yeKk

272

and P O » P 1 / - - shou ld s a t i s f y

(2 . 2 . 1) { B P i , B P j) = 0 (i * j) ,

p k i s d e t e r m i n e d by (2 . 1 . 4 , 6)

Hence ORTHOMIN can be d e s c r i b e d as f o l l o w s :

(2 . 2 . 2 a) S t a r t : yo=0; r 0 =d , p 0 = r 0 ; k=0.

w h i l e (| | r k | |>e)

do

(2 . 2 . 2 b) a k = (r k , B p k) / (B p k , B p k) (c f . (2 . 1 . 5))

(2 . 2 . 2 c) y k + i = y k + a k P k

(2 . 2 . 2 d) r k + 1 = r k - a k B p k

k
(2 . 2 . 2 e) P k + i = r k + 1 - 2 l 6 k + 1 j j p j ; B k + 1 j j = (B r k + 1 , B P j) / (B P j , B p j)

j - 0
k=k+1 (c f . (2 . 1 . 7 a))

od

2 .3 ORTHOMIN (m)

For k large, the amount of work involved for (2.2.2e) may be
prohibitive. Therefore a variant of (2.2.2) is often used, for
which (2.2.2e) is replaced by

k
(2.2.2e') Pk+i=rk+1- £ Bk+1,jPj

j=k-m

Here m£l is given (generally 1im£IO).

It is obvious that when B is nonsymmetric in most cases this
variant is not a projection method.

2.4 Conjugate Gradients

The method of conjugate gradients for (1.4) can be derived
from section 2.1 by putting

273

<.,.>={.,.) .
A

Hence, with the notation of 2.1

yk=arg min (b-Ay,b-Ay)

y£Kk A"1

and

!Pi,APj)=0 (for all i^j).

pk is determined by (2.1.4,6). Since A is symmetric w.r.t.
<.,.> (2.1.7b) holds.

We give here a version of the method.

(2.4.1a) Start: yn=0 ; rg=b , Po=ro ; k=0.

w h i l e (l | r k | |>e)

do_

(2 . 4 . 1 b) a k = { r k , r k) / (p k , A p k) (c f . (2 . 1 . 5))

(2.4.1c) yk+1=yk+akPk

(2.4.1d) rk+1=rk-akApk

(2.4.1e) Pk+1=rk+1+6kPk ;6k=(rk+1'rk+1)/(rkrrk)
(cf. (2.1.7c))

k=k+1

od

2.5 Bi-Conjugate Gradients

In C4*J,C3 3 the following generalisation of the CG-method was
proposed, which may be applied to problems of type (1.5).

Let
/B 0\

(2.5.1) A= , A£L(7R2n) ,
1̂ 0 B ^

and

(2.5.2) b=(d,d)T.

274

Consider

(2.5.3) Aw=b

where

w=(x,x)T, x,x£fRn,

then (2.5.3) is equivalent to

Bx=d

and

BTx=d.

Define the "innerproduct" [.,.] in 1R2n by
Cz-j ,z2] = ziQz2 (z-j ,z2£$?n) , where

In is the n-dimensional unity operator.
[.,.] is a symmetric and linear form, but not positive defi
nite (Cz,z]40 for some z^0,zelR2n).
A is symmetric w.r.t. [.,.].

The method of bi-conjugate gradients is derived by applying
method (2.1.1) to problem (2.5.3) where

<zi,Z2>=Cz^,A~1Z23.

pk is determined by (2.1.4,6). Since A is symmetric w.r.t.
<.,.>, (2.1.7b) holds. The method is usually given as follows

(2.5.5a) Start y0=0 (y0=0); r0=d, r0=d, Po=rn» P0=rn;

k=0.

w h i l e (|rj{| |>e)

do

(r k , r k)
(2 . 5 . 5 b) 0^= (c f . (2 . 1 . 5))

<Pk'BPk)

(2 . 5 . 5 c) y k + i = y k + a k P k

Cyk+1=?k+ akPk)

275

(2.5.5d) rk+1=rk-akBpk

(2.5.5e) Pk+i=rk+1+Bkpk (rk+1,rk+1)
; Bk= (cf.(2.1.7c))

Pk+1=rk+1+6kPk <?
k,rk)

k=k+1

od

Some remarks

2.5.1 It is easily verfied that

rk=*k(B)r0 »
 ?k=*k!BT)r0

(2.5.6)

Pk=9k(B)r0 , Pk=6k(BT)r0

where <j)k and Qk are polynomials of degree k.

2.5.2 When B is symmetric, then method (2.5.5) is equivalent
to the CG process.

2.5.3 Czi,A~^zz] is not an innerproduct. It is therefore clear
that many theoretical aspects of the CG process do not
hold for the bi-CG process.

2.5.4 In particular, the method breaks down when

(pk,Bpk)=0 or (rk,rk)=0 (and rk*0) .

See Z62 and C33 on these aspects.

2.5.5 However it can be shown that whenever the bi-CG process
does not break down, and x*€Kk=span{pn,Pi,..,pk_i } then
yk=x* (see C13, p. 390]).
Hence bi-CG is a "quasi-projection method".

2.6 CG-Squared (CGS)

The determination of f k and pk in (2.5.5) is only needed for
the calculation of ak and 0k. In particular, the matrix-vector
product BTpk of (2.5.5d) is only needed for an innerproduct.
In C11D a variant of bi-CG is derived that does not need such
matrix vector products.

276
Since the derivation of CGS is just a manipulation on the for
mulae of (2.5.5) we shall only indicate how it is done. By
(2.5.6)

(rk,rk) = (<t>k(B)r0,$k(B
T)ro) = (<i>k2{B)r0,r0)

and

(Pk'BPk) = (B6k 2W r0' r0)-

*Pk) From (2.5.5) recursions in 6k
2(B) rg(=rk) and <|)k

2(B)ro(=

that use 0k(B) cj)k (B)r0(=ek) and $k(B)0k_i(B)r0{=hk) can be de
rived. For these last two terms also a recursion can be de
rived.
With yk satisfying rk=d-Byk the following process can be de
rived

(2.6.1a) Start: y0=0 ; ?n=d, Pn=rQ ;k=0.

while (||rk|>e)

do

(2.6.1b) ak=(r0,rk)/(r0,Bpk)

(2.6.1c) hk+1=ek-akBpk

(2.6.Id) rk+1=rk-akB(ek+hk+l)

(2.6.1e) yk+1=yk+Ck(ek+hk+l)

(2.6.If) 3k=(r0,r"k+1)/(r0,fk)

(2.6.1g) ek+1=rk+1+Skhk+1

(2.6.1h) Pk+1=ek+1+Bk(hk+1+ekPk)

k=k+1

od

In (2.5.5d) rk=<j>k(B)d and in (2.6.7d) r"k=!})k
2 (B)d (for the same

plynomial $ k).
Consequently, if yk*=x* for some k*, then yk =x*.

Furthermore, if | cj)k (B)d |« d, then in many cases ||(()k
2(B)d|| may

be expected to be even smaller (see also C11D). Hence one may
expect CGS to converge faster than bi-CG.

3. Preconditionings

277

In this section we present the two preconditionings we used
with the iterative methods of the previous section to solve
the linear problems.

3.1 A "block-Gauss-Seidel" Preconditioning

In problems involving the continuity equations the unknowns
may be ordered in such a way that

'D1 01,1 " 2 > 2 |

B=| L 2 > 1 D2 U2j3j

LL3,1 L3,2 D3

where D-j ~ V, D2 ~ (J)p and D3 ~<|>n.

Hence B=L+D+U, and (1.5) is equivalent to the following pre
conditioned system

(3.1.1) C(L+D)" 1 B(I +U)" 1D (I+U)x=(L+D)_1d

in short

(3.1.2) By=d.

It is easily verified that (L+D)~^q (for some q) can be ob
tained by a forward substitution process, requiring L-U decom
positions of D£ (i=1 ,2,3).
In section 4 we present some testresults for iterative methods
of section 2 that are applied to the preconditioned system
(3.1.2).

3.2 An Incomplete Line-block Factorization

Assume that the unknowns are ordered in such a way that

D1 "I

L2 D2

"N-1

DN

278

in short

B=L+D+U.

For example on (grids that are distortions of) a rectangular
grid, many box-schemes, difference schemes and finite element
schemes allow such orderings. In such cases the blocks B^ are
associated with mesh-columns. From now on, we assume the grid
to be (a distortion of) a rectangular grid.

In many cases Matrix B of type (3.2.1) can be decomposed as
follows.

(3.2.2) B=(L+A)A-1(A+U)

where A=diag (A-],...,AW)

satisfies

-1
(3.2.3) Aj=Dj-LjAj_1Uj_1 (j=2,3, ..,N)

In [5], [2] a factorization of B is proposed where

(3 . 2 . 4) B£(L+A)A-1(2+U)

w i t h

(3 . 2 . 5) _ _•,
A j =Dj-Sp j (L 1 Aj_ 1 Uj_ 1) (j = 2 , 3 , . . , N)

r . ^
[0 i f dk>1=0

where Spj(C)kj XEJ
tc^ i otherwise

for an m x m matrix C=(c]< i)

Hence 2j has the same sparsity pattern as Dj.
Since Lj and Uj_i are sparse, it is obvious that not all
elements of Aj_-j need to be calculated. We only need the main
diagonal and some co-diagonals. These can be calculated quite
easily in many cases.
For most discretisations used on (distortions of) rectangular
gids, Dj has a tridiagonal structure, so that

279

(3 . 2 . 6)

t h a t i s : Aj= Aj+9jk+Uj
where ^ j / 9 j and Uj a r e 3 x 3 m a t r i c e s .
Aj may be decomposed into

-1
(3 . 2 . 7 a) A j = (A j + r j) r j (r j + U j)

where

(3 . 2 . 7 b) T j=d i ag (Y 1 f . . , Y M)

and

Yl =6l
(3.2.7c) _!

Y 1 = 9 J - X J Y j - 1 U j - 1 (j = 2 , 3 , . . M) .

Le t

- 1
(3 . 2 . 8) Sj=Aj

t h e n , wi th S j = (s ^ j j ,

we have (see [5])

(3 . 2 . 9 a) s = Y _ 1

-1 -1 -1
(3.2.9b) Sk k =Y K +Yk . u

k s k + 1 k+1-Xk+1-Yk
-1

s k , k - l = - s k . k - 1 + 1 - A k - l + l Y k - l
(3 . 2 . 9 c) _i

s k - l , k = - Y k - l - u k - l s k - l + 1 , k
(l = 1 , 2 , . . k - 1)
(k = M - 1 , M - 2 , . . , 1) .

Remark: When dealing with a five-point discretisation, Lj and
Uj are diagonal and only 3 diagonals of Sj need to be calcu
lated. For the usual nine-point scheme, 7 diagonals of Sj are
needed for (3.2.5).

We resume:

B=(L+A)A-1(A+U)

280

where

A=(A+nr1(r+ui

is a block-diagonal matrix (cf. (3.2.2), (3.2.4) and
(3.2.7)). The following equation is now equivalent to (1.5)

cr(r+u)-1(L+A)-1B(A+u)-1(A+r)D(A+r)-1(A+u)x=
(3.2.10a)

n r + u) - 1 (L+A)-1d

in short

(3.2.10b) §y=cL

In the next section we present some results with the precon
ditioned problem (3.2.10).

3.3 A Simplification of the Line-block Factorization

Instead of (3.2.4,5) we shall also consider the follwing
factorization of B,

(3.3.1) B2!L+2)2H (Z+U)

where

(3.3.2) A^Dj (j=1,2,..,N).

Obviously, (3.3.1,2) is a cheaper preconditioning than
(3.2.4,5).

4.1 Testresults

In this section we present testresults for some combinations
of iterative methods of section 2 and preconditionings of
section 3, when applied to linear problems arising in the cal
culations on a CMOS Inverter. The device is described below

281

Figure 4.1
CMOS INVERTER

c 1

c2

C3

c4

c5

C6

c7

C8

(p-source):

(p-gate):

(p-drain):

(n-drain):

(n-gate):

(n-source):

(p-substrate):

(n-well):

4)p=5,<t̂ 1=5 , charge neutrality (c.n);

V=5;

4p=0, 4>n=0, c.n.;

<tp=0, <th=0, c.n.;

V=-5;

*p=-5/ <t>n=-5' c-n-J

Vs-5' ^=-5' c-n-.-

$p=4. 275 — > 4.2725, 4>n=4.275 —»4.2725, c.n.

The top-dope values are given per p3.

The Gummel-Scharfetter scheme {[83) was used on a nonuniform
48 x 30 mesh. This resulted in a system of equations

(4.1) F(w)=0

with

(4.2) F:1Rn—4lRn.

In this case, n=4128.
We obtained solutions of problem (1.1) for different values of
*p and $n at the contact cs, by means of a continuation method
(see [7]) .

282

Each nonlinear subproblem was solved by Newton's method (with
damping) , that is, for each subproblem a sequence wk had to be
generated, where

(4.3) wk+1=wk+Xkdw|<

^k suitably chosen

and

(4.4) J(wk)dwk=-F(w
k) (k=0,1,...).

Table 4.1 gives results for one such Newton process. In that
case w° is the solution of (4.1) with 4>p=0n=4.275 at eg and F
(and J) are associated with 4>p=4>n=4.2725 at eg. It took 4
Newton iterations for the stopping criterion to be satisfied.
The tables below give results for several methods to solve the
linear problems (4.4). The CPU times given include the time
needed for assembling the Jacobian J and righthandside F, etc.

Table 4.1
Testresults for CMOS-inverter (one Newton process)

method

(2.3)?m=10

(2.3);m=10

(2.6)

(2.6)

preconditioning

(3.1)

(3.2)

(3.1)

(3.2)

Direct (MA32AD, Harwell)

CPU-time

failure*

failure*

445s

230s

720s

•Table 4.2
Testresults CMOS-inverter (first Newton-correction)

method

(2.6)

(2.6)

preconditioning

(3.2)

(3.3)

iterations

23

44

Direct (see above)

CPU-time

88s

120s

188s

* see next section.

283

5. Conclusions

Method (2.3) is not a projection method. It is our experience
(see e.g. Table 4.1) that this causes the process to "con
verge" very slowly for several problems. That is, very small
correction steps are being taken while the approximations are
far away from the solution. (A similar behaviour can be
observed in gradient methods for linear problems.) The
"quasi-projection method" CGS (2.6) does not have this
draw-back. Although there is hardly any theoretical evidence,
it appears to work very well, when used with the proper type
of preconditioning.

Both preconditionings (3.1,2) appear to work well although the
"Block-Gauss-Seidel" preconditioning (which requires 3 L-U
decompositions of n/3 x n/3 matrices) is much more expensive.

In conclusion, CGS with line block preconditioning is a very
robust combination to solve the linear problems arising in
coupled semiconductor problems. It is also much more efficient
than Gaussian elimination.

284

References

[13 0. Axelsson, "Conjugate Gradient Type Methods for
Unsymmetric Systems of Linear Equations"
Linear Algebra and Its Appl., vol 29, p.1, 1980

£23 0. Axelsson, et al, "On Some Versions of Incomplete
Block-Matrix Factorization Iterative Methods"
Kept. 8322, Cath. University, Dept. of Math., Nijmegen,
The Netherlands, 1983

[33 R. Fletcher, "Conjugate Gradient Methods for Indefinite
Systems"
Proc. of the Dundee Biennial Conference on Numerical
Analysis (G.A. Watsone (ed.)), Springer-Verlag, N.Y.,
1975

U3 C. Lanczos, "Solution of Systems of Linear Equations by
Minimized Iteration"
J. Res. N.B.S., 49 p.33, 1952

[53 J.A. Meijerink, "Iterative Methods for the Solution of
Linear Equations Based on Incomplet Factorization of the
Matrix"
Publ. 643, Shell, Rijswijk, The Netherlands, 1983

[63 B.N. Parlett & D. Taylor, "A Look Ahead Lanczos
Algorithm for Unsymmetric Matrices"
Rept. PAM-43, University of California, Berkeley, Center
for Pure and Applied Math., 1981

[73 S.J. Polak, et. al., "Automatic Problemsize Reduction
for On-State Semiconductor Problems"
IEEE Trans. Elect. Dev., Vol ED-30, p.1050, 1983

[83 D.L. Scharfetter & H.K. Gummel, "Large-Signal Analysis
of a Silicon Read Diode Oscillator"
IEEE Trans. Elect. Dev., Vol ED-16, p.64, 1969

Cg3 W. Schilders, et. al., "A Comparison of Subset Solving
Algorithms"
Proceedings of NASECODE III (J. Miller (ed.)), Boole
Press, Dublin, p.258, 1983

C103 J.W. Slotboom, "Analysis of Bipolar Transistors", Ph.D
Dissertation, University Eindhoven, The Netherlands,
1977

285

[113 P. Sonneveld, "CGS, a Fast Lanczos-type Solver for
Nonsymmetric Linear Systems", Rept. 84-16, Delft
University, Dept. of Math., Delft, The Netherlands, 1984

CI 2D P.K.W. Vinsome, "ORTHOMIN- An Iterative Method for
Solving Sparse Sets of Simultaneous Linear Equations"
Proc. Fourth. SPE Symposium on Reservoir Simulation,
L.A., p.149, 1976

C133 J.H. Wilkinson, "The Algebraic Eigenvalue Problem"
Clarendon Press, Oxford, 1972

