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Summary

The one dimensional off state P-N junction is considered
from the point of view of efficient numerical and in particular
finite element analysis. The equations are briefly stated and
specialised to the off state form. The known features of the
solutions to the normalised equations are discussed, A number
of finite element techniques developed in other applications
during recent years are discussed, in a speculative way, to see
if any might be advantageous in the P-N junction problem, The
intention is to identify efficient finite element techniques
which would then be applicable in more complicated problems, up
to three dimensional on state transient devices.
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1. JIntroduction

In recent years it has become accepted that the accurate
numerical modelling of semi-conductor devices is an area of
great importance, as it leads to a greater understanding of
device Dbehaviocur and improved device efficiency. This is
reflected in recent conferences devoted to this topic
(NASECODES 1,2 and 3),[1,2,3] numerous publications im this
area, see for example [36], and the setting up of an EEC
initiative in device modelling.

In this paper an attempt is made to look at an extremely
simple device, namely a P-N junction, considered in only one
dimension. One of the problems of modelling semi-conductors is
their highly nomlinear behaviour, In the simpler off-state
this occurs particularly at the joint between the P and N
regions, In the onstate the rapid variation in the field
variables can occur at an unknown place in the device. It was
decided to concentrate in the first instance on the junction
between P and N regions, to see if techniques could be evolved
to give computaticnally cheap numerical solutions in one
dimension., If this turned out to be possible, it was hoped that
the methods could be extended to the onstate and to two and
three dimensions,

The methods which will be 1looked at come from other
finite element application areas, and are

grading and adaptive refinement of meshes

mapping, global or local

special finite elements with analytical expressions
singularity techniques

upwinding (Petrov—Galerkin) methods

global elements

boundary integrals

shock or front modelling

It is of «course possible that none of these techmiques
will work, but it does seem tc be worth while to investigate
them as there is no a priori reason to suppose that the
classical polynomial interpolation and weighting is going to be
the optimal finite element technique for such a nonmlinear
problem, Moreover even if the proposed methods are not
directly applicable they may suggest new possibilities which
will work,

The techniques can be conveniently summarised as follows,

The starting point is the off state differential equation which
can be written as (details are given later)

() =0 1
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This can be discretised as

ij(Nn>d9=o 2

In which P is the electrostatic potential
N is the element shape function
¥ is a8 weighting function
2 is the problem domain
and a summation over all elements is implied.

Mapping globally corresponds to changing £ to a more convenient
form,

Mapping locally corresponds to changing N(x,y) to N(é,&) where
the mapped co—ordinates are x and y.

Using analytical expressions in the shape function corresponds
to changing N

Using Petrov Galerkin weighting corresponds to changing W

Use of boundary integrals corresponds to the change of the
domain from 2 dimensions to 1, and the use of different shape
functions., (These should now be based on Green's functions,
which are not available for nomlinear problem.)

Many combinations of these possibilities exist,
2. Governing Equations

See, for example, Shockley[4] or Szel5]. Poisson’'s equation
for the electrostatic potential ¥ is

VZp=-p/c¢ 3
where & is the dielectric permittivity and p, the space charge
density is composed of two different mobile carrier densities
(electrons, n and holes, p) and the doping of ionized donors

and acceptors, ND and NA‘ So that

p=q(p~n+ND—NA) 4

where q is the electron charge., =n and p are given, in terms of
quasi Fermi potentials for electrons and holes, Dn and ﬁp, as

ﬂp— 4 p-0
p = n.exp q(“‘;&?“) o = nexp q(‘_IE———) 5

where T is absolute temperature and k is Boltzmann’s constant,
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The equations of hole and electron current continuity can be

written as

0 1

_E =~ —~ V.J-R 6

ot q P

Jn 1

—= - 9,3~ R 7
n

Jt q

and the equation for hole and electron currents is

J = - vyo - D Y 8
P q Pp p q P P
Jn =-gqp n VU +g Dn ¥n 9

in the above p, and p are the electron and hole mobilities and
Dn and D_ ar¢ the efectron and hole diffusivities. R is the
recombinatfon and Jn and J_ are the hole and electron currents.
A number of choice$ are abailable to the numerical modeller, n
and p can be written in terms of the quasi—-Fermi potentials @n
and @, equations 5, Other variables which can be used are 1
and p,” where

p = exp(qop/kT) and n = exp(—qﬂn/kT) 10

It is worth noting that similar equations to those of the
semi—conductor also arise in the study of reaction kinetics and
that they have been successfully modelled using finite
elements, {16,17,18,19] Similar equations also occur in the
surface chemistry of clay minerals. In the reaction kinetics
application questions of uniqueness and existence arise, which
does not seem to be the case with semiconductors, presumably
because the boundary conditions are different,

3, Nature of the solution

The classical one dimensional P-N problem has a solution
whose form can be determined with a fair degree of precision,
depending wupon the doping.[6] The solution is characterised by
a boundary 1layer effect at the junction between the P and N
materials, It is possible to model the boundary layer directly,
by using a very fine mesh of finite elements and this appears
to be the only approach which is considered in the literature,
However the consequences of this approach are as follows.

1. Fine meshes with very many unknowns.
2. Slow convergence.

4, Possible modelling techniques
It seems appropriate to ask if the modelling of the

interface effects could not be made more efficient by improving
the modelling, The main possibilities are as follows:
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4.1 Grading or adaptive refinement of the mesh,. Refinement is

almost the only technique which has been wused to date in the
literature and has already been discussed, Adaptive refinement
is a very interesting possibility which does not appear to have
been used.

4.2 Mapping of co—ordinates, This method has been used in other
numerical applications, chiefly as a means of dealing with very
large or infinite domains, In these cases some means of
extending the mesh is sought. The mapping can be global, [20]
that is of the whole problem domain, or local to an element.
[11]

4.3 Incorporation of analytical expressions in the finite
element shape functions, For certain special values of the
doping, =an analytical solution to the off-state equation is
known, Jt is possible to assume that the form of the solution
for other doping functions will be reasonably similar to those
known analytically, It is possible to include these known
functions in the element shape function, along with the
standard polynomials, which allow a measure of variation in the
details of the device behaviour.

4.4 Singularity techniques. In elasticity problems
singularities sometimes arise. Economical and efficient
techniques have been devised for dealing with them,[7,8,15] In
some respects the behaviour of the P-N junction can be regarded
as very similar to that of the elasticity problem with =a
singularity. It might be thought that the connection between
the two problems is fairly tenuous, but the benefits, should
the techniques prove to be portable are potentially vast.

4.5 Upwinding or Petrov—-Galerkin Methods, Boundary layers of
the type that arise in the P-N junction also occur in fluid
mechanics, which is where the term comes from, And the fluid
mechanics method of matched asymptotic expansions has been used
by Please [6] to arrive at P-N junction solutionms, In recent
years fluid mechanics problems in which boundary layers arise
have been treated very effectively using ‘’upwinding’' methods
which are now, after considerable research, well understood.
The same approach may be applicable in the analysis of P-N
junctions,

S. Detailed assessment of the methods
5.1 Grading and adaptive refinement of meshes

There is nothing particularly subtle or complicated about
the concept of grading the finite element mesh, It should be
pointed out that the method will be most effective if the
likely form of the analytical solution, and the element shape
functions are both considered while generating the mesh, The
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method can be linked to adaptive mesh generation,[21,23,24]
which cannot be explored in depth here. In carrying out
adaptive mesh refinement it is desirable, though not essential,
that a suitable norm exist., It seems that in the off state
case, or in the solution of the equation for electrostatic
potential in a Gummel type of iteration, such a norm does
exist, This will now be shown.

The governing equation, assuming @

and @p to be
known functions of position can be written

n
2y = vlexp(ﬂ) + yzexp(—ﬂ) + v, 11

where v1, 79 and 73 depend only upon position, The variational
form of eqn. 11 can be written as

G = J 0 F 40 where 12

F = % (V|2 + 1 exp(B) - y,exp(-B) + 7,0 13

since the Euler-Lagrange equation corresponding to stationarity
of G is

dF aF aF

- - - =0 14

a8y a(ap/ox)  a(op/ay)

which is just egqgn, 11, The Legendre condition for the
stationarity of G corresponding to a minimem is [12, p 215].

d2F + 32F >0 15
a(ap/ax)? a(ap/ax)?

which is clearly true for the functional, 13, so the exact
solution of 11 corresponds to a minimum in G, This can be used
to compare solutions, and to rank them in order of accuracy.
In particular it provides a criterion when searching for
optimal mappings.

¥here no such variational form is available the
adaptation of the mesh must proceed wusing some less precise
criterion based on gradients of the potential,

5.2 Mapping Co—ordinates

Here it is necessary to map the narrow boundary layer
region close to the junction into a much wider region, so that
the details of the device behaviour can be resolved more
sharply, and the gradients of the potential in the mapped model
are mnot so steep and do not therefore generate such pronounced
modelling difficulties. The general form of the desired mapping
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1

Figure 1. Approximate mapping function
is readily specified, and is as shown in Figure 1, If the
problem 1is scaled in such a way that the width of the boundary
layer in both sets of co—ordinates is 1 then the mapping must
expand the first half of r, the real co—ordinate, into most of
s, the mapped co—ordinate, There are an infinite number of
possibilities here but two of them are
5.2.1 A simple polynomial mapping of the form

s = sqrt(r) 16
or, more gemnerally

r=s 17

where n is less than 1,

This can of course also be used as the basis of an economical
and efficient mesh grading scheme,

5.2.2 A logarithmic scheme

s = In(r+l), «r = exp(s) - 1 18
Many other possibilities exist, The form of the constant
doping PN junction solution for potential is very like tanh(x)
and so & mapping based on a hyperbolic function, particularly
tanh, might be effective here,

5.3 Analytical Expressions

For the case of constant doping it is possible to reduce
the solution of the off-state potential equation to the
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determination of an integral, This integral, although not
available analytically, can be found to any desired accuracy,
by the use of numerical quadrature, When doping is zero (not
too important), there is an analytical solution and when doping
is an arbitrary function of x the the solution of the
differential equation is more difficult. For the constant
doping <case the solution to the equation can now be treated as
a function and it can be approximated, This function can now
be wused as the basis for a special element, in which the shape
function is composed mainly of the special function, but with
polynomials in addition, Suppose that we denote the constant
doping solution by PN(x). Then a suitable element shape
function might be PM(x)p(x), where p(x) is a polynomial of
desired degree, The element matrix can be formed in the uswual
way, with the derivatives of M(x) and p(x) being readily
obtained. The element shape function can be written

N(x) = PN(x) p(x) 19
and so dN(x) _ dPN(x) p(x) + dp(x) PN (x) 20
dx dx dx

The next step is the integration over the element domain., This
would be possible using a modest number of Gauss—Legendre
integration points, or if more accuracy for less computational
cost were required, a special quadrature formula could be
developed. In any event provided that the function PN(x) and
its derivatives were available, no special problems should
arise,

Such methods have already been applied in stress
singularity problems of fracture mechanics to derive special
elements which are very effective.[7,8] They have also been
used to develop infinite elements for unbounded domains
[9,10,111] and Hughes[14] has discussed in general terms the
development of special elements for special problems,

Of course special shape functions have in a sense been
used since the earliest attempts to model semi-conductor
devices, The well-known Scharfetter—Gummel method [22,36]
utilises @& non linear shape function for the quasi-Fermi
potentials, If a polynomial representation of fp is used in
the hole continuity equation

n¥I{exp(~0)Vp) = R 21

this leads to an exponential current density distribution close
to each grid point. However this is a poor approximation,
since current density varies only weakly with position. A good
discussion of this point is given by Engll36]. Requiring
constant current density leads to a representation in which the
nodal variable is exp(qP /XT), and the shape functions are
nonlinear, The idea of a special shape function is also
implicit in the presentation of Mock[37] in particular pages
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58-60, It may be that a more formal acknowledgement of the use
of special shape functions for all field variables, might lead
to a more consistent and logical development and in particular,
more rational generalisations to 2 and 3D problems. Another
way of interpreting the Scharfetter Gummel algorithm is as a
Petrov—Galerkin method.

A major gquestion here is whether the function PN(x) would
change substantially if the doping were altered,. If this were
so, then the labour of recomputing the analytical solution for
every change in the doping profile, might tell against such an
approach, Simple analyses of junctions with abrupt changes and
linear changes in doping [5] give gquite similar distributions
of potential. Another question is how this technique would
extend to the two-dimensional case. In the first instance, one
would envisage the special shape functions being used in the
direction normal to the line of the boundary between P and N
regions with conventional polynomial shape functions parallel
to the boundary. However, where the PN boundary turns through
a right angle, it is not clear what the best technigue would
be.

At opresent one cannot envisage how such a method would
work, but one can outline a natural progression to evaluate the
method,

1. Determine the Y distribution for various constant
dopings, using quadrature.

2. Repeat 1. for other doping distributions, including
linear and quadratic variations, and those likely to occur in
practise e.g, error function type distribution,

3. Study solutions from 1 and 2 for any common features,
If the solutions are reasonably similar the technique may work,
if not, it probably will not.

4. Assuming 3 is favourable devise a function PN(x),
which describes ’'reasonably’ the P distribution close to the
junction,

5. Develop an interface element using the PN(x) function
normal to the interface and Gauss—Legendre gquadrature,

6, If 5. works develop special quadrature formula, for
higher accuracy. Some work has been done on this, for
exponential shape functions, which seem a likely candidate, by
Emson and Greenough [13],

An input from work on analytical solutions will clearly
be of value in this area,
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5.4 Singularity Techniques

In the case of elasticity it has been shown that for the
8 node iso-parametric finite element, a displacement of the
midside node to the quarter point of the element edge induces a
singularity in the mapping between the local and global

co—-ordinates, at the nearest vertex, This is easily seen by
plotting the global co—ordinate, x as a function of the local
co—-ordinate, &, as shown in Figure 2, This was originally

thought to be a totally undesirable feature of element
behaviour, but Henshell[15] later showed that it could be
exploited to enable the element to model accurately stress
singularities,

X
O— e - 44’////
-1 1 o ° |

Figure 2 Singularity in x-f mapping induced by moving midside
node to gquarter point.

The rapid changes in the potential at the PN junction are
not singular, but nevertheless this method may still be
applicable, Firstly it is possible to make the mapping only
tend towards singularity, by moving the node only part of the
way towards the quarter point. This enables the element shape
functions to model the rapid changes in potential more
accurately without the presence of a true singularity. Secondly
it is possible to use a different mapping function, instead of
the original element shape function. This would follow the
transfinite element techniques of Gordon and Hall.[25,26] It
would be simple to devise a blending function, of the kind
which they describe, which gives a linear mapping for midside
nodes placed centrally, but which gives a suitable nonlinear
mapping as the mnode is moved away from the central position.
The details of this have not been worked out yet, but no
problems are envisaged,

Preliminary studies of the first option above, that is
simply moving the midside node, towards the quarter point
indicate that the modelling of the potential distribution,
using only one element is greatly improved. The empirically
determined optimal position for the test case was at about x =
~0.3, where the two end nodes are at —~1.0 and +1.0. Although
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this has not been done yet, the functiomal given in eqn. 13
affords a way of selecting the best position for the middle
node. Figures 3 to 6 show some potential distributions in half
a symmetrical P-N junction in the equilibrium off state, in
which the middle node has been moved to various positions,

No difficulties are envisaged when the 1line of the
junction is not parallel to the side of the element, as it
would simply mean moving the centre nodes on two adjacent
edges, by distances which would be easy to compute. Clearly it
would be unwise to expect too much from such a computationally
crude device as this, but it is still worth considering,
because the extra computational cost is virtunally zero.

5.5 Upwinding or Petrov—-Galerkin Techniques

These techniques have developed from efforts to solve
the Navier—Stokes equations which govern viscous flow. They
were originally an attempt to reproduce the finite difference
method in which the differencing is not symmetrical, but is
skewed in the 'upwind' direction. There has been a certain
amount of controversy about the use of the methods, principally
because they are alleged to introduce artificial dispersion,
[39] It 4is now widely accepted that they are efficient and
accurate. Jn the finite element context the method corresponds
to using a special weighting function, which is different from
the shape function. In this form it is termed the
'Petrov-Galerkin’ method. [27,28,29,30]

The difficulty in modelling Navier—Stokes flows manifests
itself chiefly in a narrow boundary layer, Because some of the
difficulties in PN junction modelling also occur in a narrow
boundary layer it seems natural to ask whether the same, or
similar 'Petrov—-Galerkin’ weighting techniques might be
effective, despite the dissimilarity in the structure of the
governing equations,

The best argument in favour of the use of upwinding for
the electrostatic potential is the close similarity in the
general form of the solution to the normallised 1D P-N junction
equation

2
g;% =2 sish P + A 22
subject to the boundary conditions U(0) = 0 and B(1) = D,
where HO is the potential at the end of the device, and the 1D
convective diffusion equation,

ap @ _
axz ax -0 23

This has the analytical solution

0 = (1 - exp(~xa))/(1 - exp(-a)) 24
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Clearly egn. 23 is linear, whereas eqn, 22 is non linear, and
the equation structure is completely different, However, the
similarity in the solutions shown in Figs, 7,8 and 9 is
striking, Both are essentially boundary layer effects,

, =10 /
/ ' .

; -
¢ - (’_e-dx)
(1-¢%) é

“'ég +‘Qjé =0

; dx dxt
/ / po)=0 g(1)=

4 N 1 Y 4 i A i i 1 O
0 A 2 .3 4 5 b .7 B .9 .o

Figuye 7 Analytical Solutions for Convective Diffusion Equation

Figures 8 and 9 show the solution for electrostatic
potential for 2 different dopings, for uniformly divided and
for graded finite element meshes, For higher doping, and a
uniform mesh, the finite element (Galerkin) results show some
oscillations, However these oscillations are not of the same
type as those in the convective diffusion problem, and there is
no theoretical reason why an upwinding process should work,

Upwinding, or the Petrov-Galerkin method, has certainly
been successful in handling oproblems in flluid mechanics,
including Berger's equation and the Navier—Stokes equations,
But there are theoretical results which suggest that for
self-adjoint problems, the usual Galerkin weighting is optimal,
The 1D equation 22 is not self-adjoint, at any rate in the
classical definition, used by Courant and Hilbert[12] and
Strang and Fix[40], but it does have a corresponding minimal
problem as we have shown, which could imply that the Galerkin
method will give the best results, in terms of the norm, though
not possibly, the best nodal values,

When the current continuity equations are written in
terms of the densities of electrons and holes, then if the
electric field is wviewed as constant, they fall into the
category of convective—diffusion equations, as is remarked by
Campbel1[38]. As stated earlier, there is a virtual identity
between optimal upwinding and the Scharfetter—Gummel algorithm,
The suggests that the existing theory for extending
Petrov-Galerkin to 2 or more dimensions may be very useful as a
way of extending the Scharfetter—Gummel algorithm,
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5.6 Shock and Front type modelling

Many of the more severe problems in semi-conductor device
modelling arise in the onstate case, where the marrow
'boundary layers’ in which there are rapid changes in potential
and currents do not necessarily occur on junctions of material
properties, and may, in the transient case, move about through
the device. There is some experience in modelling other
problems in which such ‘fronts’ or ’shocks’ occur, using finite
elements, They occur in secondary 0il recovery and in
underwater explosions to name but two applications, Techniques
which have been adopted to date are as follows

1. Local refinement of the mesh at the shock, This is
of course simply the method described earlier, However
in addition the shock has now to be first found, and
then tracked, A method for doing this in o0il recovery
problems is described by White,[31] As the location of
the shock moves, it is also necessary to change the
position of the refined section of mesh, and this
brings problems of interpolation and extrapolation to
the new mesh locations

2, Wellford and Oden[32] have proposed a special
element for dealing with problems in which shocks
occur., Jn this case the element formulation permits a
shock of wunknown size and position in the shape
function., A shape function is shown in Fig. 9. This
method has been extended by Stevens[33].

3. Finnf34] splits the advective and diffusion parts
of the advective diffusion equation and advects the
finite element mesh at the correct speed and then
solves for diffusion only. The current continuity
equations, in terms of n and p, might be amenadle to
this technique. However as elements have to be
introduced and removed at the ends of the mesh, the
house keeping problems, particularly in 2 and 3
dimensions are formidable,

Other recent developments in this area are given in [41,42].
6. Conclusions

This is a rapidly moving area, and it is difficult to
predict which methods will prove to be the best. In our view

the two most promising areas are special shape functions, and
Petrov-Galerkin weightings.
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