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SUMMARY 

The Enthalpy method has previously been used to model 
solid/liquid systems which contain moving interfaces between 
phases (e.g. the Stefan problem). We have used this approach 
to model the one-dimensional transient behaviour of 
semiconductor devices which contain electron-hole plasma 
regions with moving boundaries adjacent to depletion layers. 
The method has been employed using a finite difference scheme, 
with Gauss-Seidel iterations, and in a circuit based 
implementation. The advantage of the method is in reduced 
computational effort. 

Two particular cases have been considered: the n-base 
p-i-n diode in reverse ramp recovery and the GTO thyristor 
under gated switch-off conditions. In the case of the p-i-n 
diode, where the plasma often recedes from both junctions at 
some stage during recovery, it is shown that the shape of the 
recovery characteristic is appreciably affected by the values 
of the reverse supply voltage and the series inductance. For 
the GTO thyristor, where the plasma recedes from the central 
junction, we have studied the influence on power dissipation 
during turn-off of the parameters of the wide lightly doped 
base, and the device polarity. 

1. INTRODUCTION 

The switch-off characteristics of p-i-n diodes and GTO 
thyristors can be modelled by solving the equations of 
transport and conservation of charge and the Poisson equation. 
This comprehensive approach requires a complex program and 
leads to appreciable computing time. 

As a simpler alternative, which we use here, one can 
employ a regional approach. Under this scheme the transient 
behaviour of each device is determined essentially by the 
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evolution of the carrier densities inside the wide lightly 
doped base of the device. One divides this base into a part 
filled with plasma, where there are equal numbers of electrons 
and holes in high injection and, in the later stages of 
switch-off, one or two additional regions adjacent to the 
junctions where only one type of carrier is present (the region 
next to the blocking junction has an appreciable space 
charge). The boundaries between the plasma and these regions 
move during turn-off and the carriers within the plasma decay 
due to recombination and to extraction by the current. (For 
more details see sections 2.1 and 3, Figs. 2a and 9). 

The regional approach has already been used by several 
authors for modelling recovery in pin diodes. Benda and Spenke 
simplified the problem further by some a priori assumptions as 
to the spatial distribution of the carriers concentration 
within the plasma [1], Other authors did take into account the 
equations governing the plasma concentration [2,3,4]. The 
determination of the moving plasma boundaries requires however 
numerous iterations, especially when two boundaries rather than 
one are involved. 

In the present paper we use the Enthalpy Method [5] which 
is particularly suited to this situation. This method has been 
developed for heat problems connected with melting and 
freezing, where a moving boundary arises at the solid/liquid 
interface (e.g. Stefan type problems [6]). It has been 
extended to other applications, but to our knowledge we are 
describing its first applications to semiconductors. 

We shall deal here with 2 specific problems 

a) Ramp recovery of p-i-n diodes. 
b) Gate turn-off of thyristors. (Because the processes of 

plasma variation and space charge layer development that 
occur in GTO turn-off are similar in many aspects to those 
occurring in p-i-n diode recovery, the description of 
the turn-off process will be considered in less detail.) 

2. RAMP RECOVERY OF P-I-N DIODES 

2.1 Qualitative Description 

Ramp Recovery is considered here with the pin diode 
connected to the external circuit shown in Fig, 1. In forward 
bias a current Ip (>0) is flowing through the diode. During 
recovery the diode is connected with a reverse voltage VR and 
an inductance Lc. A more complex circuit could have been 
used, but the set-up considered here will give the main 
features of the ramp recovery. 



The current I(t) during recovery is as follows 

— = _ ZS , vDIODE(t) (1) 
dt Lc Lc 

where t is the time,VpjQpg(t) 
is the voltage developed in the 
diode. With the present sign 
conventions I is positive when 
it is in the same direction as 
Ip, V^ is positive, and 

_|, I ^DIODE^) i s positive (except 
Lc v<? during the very first stages of 

recovery)• 

IF 

<3> 

KH 

Fig 1 

It is the evolution of VQJQOE 
with time which determines the 

transient current response I(t). At t=0 the carrier 
distribution corresponds to steady state. The recovery can be 
divided into 2 or 3 phases (see for example Fig. 2a,b). 

In Phase 1 (0<t<t1) the whole of the base, of width W, 
is occupied by the neutral plasma whose density decreases with 
time while remaining in high injection. During this phase 
I^DIODE^t)I<<VR> a n d therefore, according to eq. (1) 

dl VR (2) 

dt = ~ Lc 

In Phase 2 (tj£t<t2), the neutral plasma moves away 
from thebase/p+ junction. It occupies the region 0<x<S(t). 
In the region S(t)<x<W the only free carriers are holes which 
conduct the current. 

In Phase 3 (t>t£) the neutral plasma moves also away 
from the n+/base junction. In the region 0<x<S*(t) the 
only free carriers are electrons which carry the current. The 
neutral plasma lies between S*(t) and S(t). Phase 3 does not 
necessarily arise, although it is often found during Ramp 
Recovery. 

During Phases 2 and 3 most of the diode voltage VQJQDE 
develops in the regions between the plasma boundaries and the 
junctions (S<x<W, and 0<x<S*). As these regions widen 
VQJQDE becomes comparable to V^. The variations of 
vDIODE in time determine I(t) (see eq. (1) and Fig. 2b). 
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Analytical solutions have been obtained for the evolution 
of the plasma during Phase 1, for the case when recombination 
in the emitters and at the junctions can be neglected [7,8]. 
In the case where these recombinations are important one could 
still model Phase 1 by standard numerical methods such as were 
used already for step recovery [9]. 

Phases 2 and 3 where plasma boundaries are moving require 
however a modified approach. It is there that the Enthalpy 
method is of particular advantage. 

2.2 Main Assumptions 

The following assumptions are made: 



186 
*1. The problem is one-dimensional. 
*2. The temperature of the diode is constant and uniform. 
3. The junctions are abrupt (as in epi-diodes). 
4. The base is n type. 
5. The doping Np in the base is uniform. 
6. The lifetime T in the base is constant. 

*7. The plasma carrier density is much higher than Nn-
8. The displacement current is neglected. 

Assumptions 1, 2, and 7, marked here with stars, are 
essential. Assumptions 4, 5, 6 and 8 could be waived. 

The present treatment could also be extended to take 
approximately into account the effect of diffused junctions 
(see [10]). 

2.3 Fundamental Equations 

A. In the Plasma Region. The derivation of equations (3) 
to (Sab) below is given in [11]. One has inside the plasma 

8x »*<•> i l£ + £ (3) 
3t T 

where c is the carrier concentration. D^ is the ambipolar 
diffusion constant, which in general varies with c due to hole 
electron scattering ([12,13]). 

The boundary conditions are as follows: 

At t = 0 c(x,0) is given (4) 

This is the carrier distribution in steady state in forward 
bias. 

At the plasma boundaries (see Fig. 2a): 

Two cases have to be distinguished during switch off: 

1) When the plasma touches the junctions: 

eDA|f 

= - ^ + e h n c
2 ( 0 ) t ) + e s n c ( 0 , t )

 ( 5 a ) 

1+b 
0 

_ b J - eh^ c2(W,t) - es c(W,t) (5b) 

w" 1+b 
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J is the current density, taken here as positive when it flows 
from the p+ to the n+ emitter inside the diode i.e. from 
x=W to x=0 (this is contrary to usual conventions), e is the 
electronic charge, b the ratio of the electron/hole mobilities, 
hn, sn, h_, Sp characterise the recombination in the 
n+ and p+ regions [14], 

2) When the plasma is detached from the junctions one 
takes: 

c(S*,t) = K|J| (6a) 

c(S,t) = K|J| (6b) 

where one has in cgs practical units [11] 

K = 1.04.102%d* <7> 

and 

eDA — A 3x 

«»*£ 

-J 

s*= 1+b 

bJ 

s " 1 + b 

Ivl d S 

- e|K| ^ 

|v|
 ds 

" e|K| ^ 

(8a) 

(8b) 

In Phase 1 one uses equations (5ab), in Phase 2 equations 
(5a)(6b) and (8b), and in Phase 3 equations (6ab) and (8ab). 

B. Voltage drop across the diode 

As was briefly described in section 2.1, the voltage drop 
across the diode determines the change of current I with time. 
The relation between VpxODE and * is gi v e n by eq. (1). 

The voltage drop VDJQDE c a n be written as 

VDIODE - VPJ + VS + V ( 9 ) 

Vpj is the voltage drop across the plasma (S <x<S), and the 
junctions. Vg and Vc* are the voltages developed in the 
regions S<x<W and 0<x<S , which appear during phases 2 and 3. 
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The voltage Vpj which Is given by well known equations 
[15], is usually much smaller than VR. Its effect on "I/dt 
as given in eq. (1) is therefore very minor. 

The major contribution to VQIQDE ^n e3 • (1) ^s ^S ^n 

Phase 2 and Vs + Vs* in Phase 3 (with Vg>>Vs*). 

In deriving Vg and Vg* we have followed an approach 
similar to [1], while also taking into account the variation of 
the carrier mobilities with field, due to heating. 

Let us briefly consider the derivation of Vg. The 
current in the region S<x<W between the plasma and the p+ 

junction is taken to be carried entirely by holes. This 
neglects the displacement current (cf assumption 8 of section 
2.2) and any generation current which may arise in this region 
devoid of electrons. Moreover it is assumed that the current 
is entirely by drift. One therefore has 

|J | = eup(E) p(x) E(x) (10) 

where Jp is the hole current density, p(x) the hole density and 
E(x) is the electric field (>0), up(E) is the hole mobility, 
which is taken as 

PP = & 
1 + (!ig/vpl)E 

(11) 

where up° is the hole mobility in low field and vpl is the 
limiting hole velocity [16]. The field E must satisfy Poisson 
equation. Using eqs (10) and (11) this gives 

dE 
:dx 

ND + •J4:l 
"Pl

 6ljpE 

(12) 

where e is the dielectric constant of the semiconductor. 

Integrating eq. (12) gives the following equations [17] 

»-s . K • _<„,„,] Ew 

vs =±_ £ ^ E ) 2 -2a(a+BE)4«
2ln(a+@E) 

(13a) 

(13b) 

where Eg and Ey are the electric fields at x=S and x=W, and 
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= M = - Nr 
ev. Pi 

(14) 

E5 is derived from eqs. (10) and (6b), 
define Vg as a function of W-S and J. 

Thus eqs. (13ab) 

A similar approach is used for the calculation of Vg*. 

2.4 General Strategy 

We have to solve the plasma equations, i.e. eq.(3) with 
boundary conditions given by eqs. (5ab) to (8ab), subject also 
to the circuit conditions given by equation (1), where VQJQD£ 
(t) depends on J, S and S , that is on the solution found in 
the plasma. 

The solution proceeds by time steps fit. The strategy for 
the calculation is given in the schematic flow diagram shown in 
Fig. 3. 

— t = t + et 

Es t ima te of 
J ( t ) 

Solve PLASMA eq ( 3 ) 
w i t h boundary 

e q ( 5 a b ) or ( S a b ) 
by the 

ENTHALPY method 
This g ives c(x),S,S* 

Revise value 

of J ( t ) 

Fig 3. 
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As shown in this diagram the plasma equations are solved 

by means of the Enthalpy Method. The latter will be described 
in the next subsection. 

2.5 The Enthalpy Method 

The Enthalpy Method gets its name from its first use for 
heat problems (see section 1). The enthalpy of a substance is 
by definition its heat content per unit volume. Thus the 
enthalpy Hi of a liquid at temperature T is related to the 
enthalpy Hs of a solid at the melting temperature Tf by the 
equation 

Hx = Hs + plCl(T-Tf) + L (15) 

where p^ is the density of the liquid, ĉ  is its specific heat, 
and L the latent heat of fusion. 

Eqs. (3) and (8ab) are very similar to those governing the 
solidification of a liquid contained between two parallel solid 
slabs, with a given rate of heat loss at the liquid/solid 
interfaces. Details of this similarity are given in [11], 
where the Enthalpy Method is used to calculate the decay of the 
plasma in a pin diode, for a given and constant reverse 
current. 

We shall give again a description of the method, which we 
apply to the present problem. One has to solve at time t 
eq. (3) with boundary conditions given by eqs. (5ab) or (Sab), 
when knowing the solution at t- St, and taking J(t) also as 
known (Fig. 3). The modelling of Phase 1 is fairly standard. 
The main difficulty lies in Phases 2 and 3 where the moving 
boundaries at x=S(t) and x=S*(t) are not given. 

The Enthalpy Method has the advantage over other methods 
[2,3] that during all phases of recovery it solves differential 
equations of the type given by eq. (3) over the whole range 
0 < x < W, at all phases instead of solving it only over the 
plasma, and the positions S(t) and S*(t) come out from the 
solution. 

This is done by the following steps (see Fig. 4 ) . 
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dx Lb dx Ub 

Fig 4 

af One defines c(x) 
over the range 0<x<W 
even in Phases 2 and 3, 
by assuming that c(x) 
falls abruptly from 
K JI to zero at the 
plasma boundaries and 
that 

c(x) = 0 (outside of plasma) (16) 

b) One introduces a continuous function u(x) 

u(x) = c(x)+KJj|(in the plasma) 

u = 0 at x = S and x = S* 

with 

(17a) 

(17b) 

_3_ 
3x 

, 3 u 

'A a£ 
= 0 (outside the plasma) (17c) 

i.e. D^3u/3x remains constant over OSx<S , and S<x-?W. 

With these definitions of c and u, equation (3) can be 
replaced by 

3t 3x A 3x 
£C 
T 

(18) 

where a = 1 for c ^ Kljl and 0 = 0 for c < KlJi. 

Equation (18) is applied over the whole range. 0 -s x < W. 
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One adds the boundary conditions 

e D 
A 3x 

j 2 
, , , + eh c (o,t) + es c(o,t) (I9a) 
l + b n n 

e D 
A 3x 

K 9 

Y~Tb J " eh, c (w'c) ~ es c( w' c) (-l9b-> 

It can be checked that the solution of equation (18) over 
the whole base satisfies equations (Sab) or (8ab) at the plasma 
boundaries, due to the abrupt change of c(x) at these 
boundaries and the selected values of e % 3u/3x outside the 
plasma (equation (19ab)) - see [11]. 

2.6 Numerical Solution 

Using finite differences for equidistant mesh points in 
space, and a fully implicit formulation in time, one gets from 
equation (18) 

i i-1 
c - c 
n n 

_6t_ 

6x2 n+i n+1 
- D 6ta c /i 

n n 

(20) 

6x is the mesh spacing. The index n stands for the mesh point 
stands for the average values of D^ at = n <Sx. 

between the points x_ and <n+l' The index i stands for the 
time tj_ at which a solution is sought, and the index i-1 
corresponds to the time t ^ = t± - 61, for which a solution 
has already been obtained. 

At the base boundaries n = 0 (x = 0) and n = nw (x = W) 
one uses also equation (20), from which u_i and unw+l are 
eliminated by means of equation (19ab) which take the form 

<?- D 
_U1 - u-

26x 
J ^ , 2 

- \ — — j - + eh c + es c 
1 + b n o n o (21a) 

e D 
n +1 
w 

26x 

i 9 

n , J - eh c - es c (21b) 
1 + b p w p w K ' L a - / 
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Equation (20) is then solved using the Gauss Seidel iteration 
procedure. One gets at the k-th iteration 

i,k 3t 
C n + 

3x2l 

i,k-l i,k-l 
D ... + D , 

i, k i , k 
u = G 

n n (22) 

where G n' is obtained from the (k-l)th iteration 

n 

It 
6x' 

Di,k-1 i,k-l i,k-li,k' 
n+j n+1 n-| n-1 -St a^^cV^H-c

1-1 

n n T c n (23) 

Using equations (l7ab) and Fig, 4, one_ can put the l.h.s. 
of equation (22) in terms of c 1 ^ or u 1 ^ alone in three 
distinct forms, corresponding to 3 ranges in the value of 
r i i k 
b n 

a) If G1
rf

k< 0 equation (22) gives 

C n ° ' 6x2 
i,k-l + D i ,k-1 

1 

n + j 
u £ ' k = G1'* 

n n 
(24a) 

b) If 0 -<Gi-n'
k < -KJ: 

i ,k 
= G 

i , k i ,k 
u = 0 

n 
(24b) 

0 If GxJk >, -KJ; 

1 + 
Sx2 

D i ,k-1 + D i ,k-1 
n+5 n - § 

c i>W.k _ " 
n n oxz 

D i ,k - i + D i , k - i 
n-i n+i 

KJ 

u i ' k = c L ' k
 + KJ 

n n (24c) 

Equations (24abc) give the values of c L
n and u1 '^ and the 

problem is therefore solved. 

S and S* are the abscissae where u = 0 (see eq. (17b) 
and Fig. 4) . They do not usually fal l on mesh points, but are 
obtained by linear extrapolation from the range where u<0. 
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2.7 Examples of Results 

As an illustration of the Enthalpy method, results will be 
given here showing the effect of the circuit on a diode whose 
characteristic parameters are given in Table 1 below: 

w = 

Nd 

hn 

= 100 

= 2x 

= hp 

um 

L014 cm" 

= 2x10" 

-3 

-14 

Table 

cm4 s 

I 

-1 

Dioc 

Cross 

e Parameters 

sectional area = 0 

T = 0.9 

sn = sp = 

us 

3000 

1 

cm 

cm2 

s-1 

Figs. 5 to 7, as well as Fig. 2ab refer to this diode. 

The forward current IF was taken equal to 2 A and 20 A, 
VR varied between 20 V and a few hundred volts, |dl/dtl was 
taken as 20 A/us, 50 A/us and 100 A/us. The computation of 
each recovery took 1 to 10 mins on the IBM 4381 computer. 

Fig. 5 shows recovery for fairly standard test 
conditions. Also shown in this figure are the definitions of 
IRR> fco a n d crr-

A» Corresponds to point where 
plasma detaches itself f rom 
p* i junct ion 

Fig 5. 
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Fig 6 gives the variations in recovery current for a 

larger value of I F (I F = 20 A) and various values of 
d I/dt and of V R (VR < 200 V ) . Modelling at V R > 300 V 

showed avalanching occurring slightly beyond I R R. 

t (us) 

-0.5 

100V 
200V 

I F = 20A Area = 0 .1cm 2 

ig 6. 

It is seen in Figs 5 and 6 that the point A, where the 

plasma detaches itself from the base/p+ junction, corresponds 

to values of III which are sometimes appreciably below I R R . 

Fig. 7 shows the charge recovered by the current between 

the times t = t 0 and t = t 0 + t r r (I(t0) = 0 |l(t0 + t r r ) | 

= IRR/10) for various values of the circuit parameters. This 

charge varies between 20% and 60% of the total charge held in 

the base under steady state. 

I' 3-
Ildt 

to 

(HC) 2 

Fig. 7. 

-20 
Area = 0.1 cm2 

© 

100 
Vp(V) 

200 

Table II sums up the effect of Ip, Idl/dtl and VR on 
current recovery (e.g. figs. 5, 6, 7) and on Vj^^ (one finds 
that 2.6<VMAX/VR<5). 
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Table II Effect of Circuit on Ramp Recovery 

XRR 

Curve I(t) 
(for I<0) 

trr 

to+trr 
Ql=) I dt 

Jto 

VMAX 

Increase 
in IF 

Decreases 
(but I R R 

increases) 

Widens 

Increases 

Increases 
(but Qi/IF 

decreases) 

Small effect 

Increase in 
|dl/dt| 

Increases 

Narrows 

Decreases 

Increases 

Decreases 

Increase 
in VR 

Increases 

Widens 

Decreases for 
VR < 100V 
Nearly constant 
for VR > 100V 

Increases 

Small changes 
for 
30V<VR<100V 

Increases for 
VR > 100V 

It has to be noted that although an increase in VR 

widens the I(t) curve, it does not increase trr for the diode 
described here (Table II). This is due to the fact that as 
VR increases the drop of current with time becomes more 
abrupt in the last stages of recovery (see Fig. 6) ; for VR 

small the final current decay is slow and exhibits some 
oscillations, such as could be found in an L-C circuit. 

When modelling other diodes however we have found that an 
increase in VR can produce an increase in t r r and also an 
increase in the charge extracted by the current. With these 
exceptions most of the trends reported in Table II appear to be 
applicable to a wide range of diodes. 
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We shall consider the computation of the characteristics 
of a GTO thyristor turn-off in the snubber circuit of Fig. (8), 
by the Enthalpy method. The structure of a GTO thyristor and 

the plasma decay in the wide 

© Node 
numbers 

-J 
10V 

Psc i ° ^ / ~ 
(Z) 

1V 
c = 

4,7nF 

7S-200V 

38Q 

6) 

ig 8 

lightly-doped n-base is 
illustrated in Fig. (9). The 
same general features of hole 
extraction at the (gate) 
blocking junction in the 
n-base occur as in the p-i-n 
diode. However during the 
switch off process, which is 
initiated by the switch in 
the gate circuit, hole 
injection continues at the 
anode junction while the 
carrier density falls at the 
gate junction with the 
eventual formation of a space 
charge layer. The electrons 

200 150 100 50 
Distance across n-base (um) 

F ig - 9. 

in the n-base can only disappear by recombination during this 
process. When the space charge layer is produced the anode 
current falls to a fraction of its ON state value. As in the 
p-i-n diode, the space charge layer subsequently expands 
causing the voltage across the device to rise. The 
electron-hole plasma which is trapped between the layer and the 
anode junction decays by recombination and the remaining anode 
current slowly decreases with a characteristic 'tail' (Fig.10). 

The basic equations given in the preceding sections for 
the variation of the electron-hole plasma in the base of the 
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p-i-n diode can be applied directly to the situation in the 
lightly-doped base of the GTO thyristor. The only difference 
is the boundary condition for the carrier density gradient at 
the gate junction when the plasma touches the junction, which 
is (with J>0 and JK>0) 

e D A 3x 
W 

TTT J - a .J„ 1+b n-p-n K 
(25) 

where ^n-n-n is t n e transport factor of the p-base and J^ is 
the cathode current density. The plasma always touches the 
other junction so that eq. (5b) is always used at that 
boundary. 

The Enthalpy method has been applied to the GTO thyristor 
calculation in a different form to that described previously, 
in that its equations are translated into a circuit form, and 
then solved, together with the equations for the circuit 
external to the device, by a circuit analysis program, 
PH1LPAC [19]. This procedure has the advantage that changes to 
the external circuit can readily be taken into account, however 
it has a drawback that the details of the numerical procedures 
involved are not so directly under the control of the user. 

4. CIRCUIT SOLUTION 

The equation for the carrier density inside the plasma, 
eq. (3), has the same form as that for voltage on a 
transmission line composed of series resistance and shunt 
capacitance and conductance elements. The equation for 
this voltage is 

_3_ 
3x 

1 II 
R 3x = c at + GV (26) 

where R, C and G are the series resistance, shunt capacitance 
and conductance per unit length respectively. By defining C 
and G to be non linear functions of V in the following way 

C = 

G = 

C 
0 

G' 
0 

V ^ 0 
V < 0 

V > 0 
V < 0 

(27) 
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we can reproduce eqs. (16) to (18) with K=0. The boundary 
conditions of eqs. (19) can be obtained by terminating the 
transmission line by circuit components consisting of current 
generators and linear and square law resistors. A circuit 
analysis of the network represented by these equations enables 
the junction carrier densities and the width of the space 
charge layer (if present) to be computed in circuit terms and 
from this the voltage across the n-base can be obtained as a 
function of the anode current and time. Representing this 
voltage as a voltage generator it can be added to other circuit 
elements which model the remaining regions of the thyristor, 
i.e. the p base and the n+ emitter, to form a complete model 
for the device [18]. The program, PHILPAC, used for such 
simulations has the advantage that it can handle the non linear 
functions of G and C in eq. (27) and in addition assign to 
voltage and current generators values derived from expressions 
containing voltages and currents in other parts of the cicuit. 

5. COMPUTED RESULTS OF G.T.O. THYRISTOR TURN-OFF 

The circuit solution of the 'Enthalpy method' equations 
applied to the GTO thyristor has been used to compute current 
and voltage waveforms in a GTO thyristor with a wide 
lightly-doped n-base switched off from an ON state anode 
current of 5 Amps in the snubber circuit of Fig. (8). The 
parameters of the thyristor were as follows 

Area = 4 sq. mm., an___n = 0.80, t-j (n-base) = 200 vim, 

N (n-base) = 101^cm~3) x (n-base) = 1 us, 

At the anode junction hp = 2.10~^cm^/s, sp = 0 cms/s 

with the circuit components having values 

Cs = 4.7 nF, Ls = 40 vH, Rs = 38fi, Vs = 200V, Vg = 10V, 

Lg = 0.21 uH. 

These circuit components giving an initial dVAK/dt of 1 kV/us 
during switch off, Fig. (10) shows the computed anode current 
and voltage waveforms together with experimental results. The 
power dissipated in the device during turn-off is an important 
quantity, and Fig. (10) also shows a plot of this. The total 
energy, E^, dissipated in the thyristor during switch-off 
should be as small as possible. In Fig. (11) the variation of 
Ef with n-base lifetime, width, and doping density is shown 
for the circuit and device conditions given above. It can be 
seen from these results that the energy loss is reduced by 
decreasing the base lifetime, raising the base doping density, 
and increasing the base width. 
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It is possible to reverse the polarity of the layers of 

the n-base thyristor to produce a thyristor with a wide lightly 
doped p-base, see Fig. (12). The switch-off of this device in 
the reverse polarity version of the circuit of Fig. (8), with 
the same circuit and device constants as for the n-base device, 
is compared with the n-base result in Fig. (13), which shows 

the anode current variation with 
time. It can be seen that the 
p-base thyristor has a longer 
storage and fall time. It would 
be expected that this would cause 
a larger power dissipation in the 
p-base device and this is 
confirmed by the plots of Fig. 
(14). This work would suggest 

that there are disadvantages to the use of p-base GTO 
thyristors in switching circuits. 
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These results have been obtained with the use of a 

one-dimensional model. However the electron-hole plasma in the 
wide lightly doped base of the thyristors is also compressed in 
directions parallel to the junctions as well as in a normal 
direction during switch-off. For a full model of the devices 
this effect should be taken into account although, for the 
circuit conditions quoted, reasonable agreement has been 
obtained between the one-dimensional predictions and 
experiment. 

6. CONCLUSIONS 

The Enthalpy method provides a rapid way of computing the 
time dependent characteristics of a semiconductor device whose 
behaviour is critically determined by the movement of the 
boundaries of an electron-hole plasma in a base of the device. 
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