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Abstract

Two basic convergence problems exist when implementing high gain device models such as that
used for HEMT transistors into SPICE[1,2] . The first is the classic concave function problem
encounted with all FET and bipolar drain current characteristics. The case has long been know to
cause failure in global convergence for the undamped Newton method. The solution to this problem
has been to develop various damping strategies for Newton’s method, of which the norm-reducing
methods [3,4] are the most general and mathematically sound. The second is the transconductance
case and is, unfortunately, peculiar to norm-reducing methods that employ the L,-norm. The solution
presented here is to replace the Ly-norm with a different norm, the Nu-norm. From a circuit point
of view, the Nu-norm determines which unknowns should be converged first, prioritizes those unk-
nowns, and guides the damping of the Newton updates accordingly. From a mathematical point of
view, the steepest descent direction in the Nu-nomm is parallel to each Newton update at the iterate
point and, therefore, allows more effective damping of the updates. The most tangible results of
employing the Nu-norm have been an order of magnitude reduction in Newton iterations for high
voltage and current gain circuits.



In this paper, we consider solving the homeomorphic system of non-linear equations G(u) = 0 with
Newton's Method. The system G(u) is the set of node and branch equations that arise from a given cir-
cuit topology and model equations and the components of u are node voltages and branch currents. We
employ the following form of Newton’s method

Ugyy = Uy + Ty-Our [1.a]
Hy8uy = —G(up) (1.b]

where u,,, and uy are the k+1* and k™ iterates in the unknowns, 8u, is the update direction between
iterates, T, € (0,1] is a scalar damping parameter, G(u,) is the nonlinear system evaluated at the u;
iterate, and H; is the Jacobian of G(u;) with respect to u,. The parameter T, is chosen such that the
norm of G(uy,) decreases from that of G(uy). The specific choice of T, is guided by the particular
norm-reducing technique employed and its values are well defined for homeomorphic mappings [4] .

The Ly-norm is by far the most common choice in many applications for measuring G(-) owing to
its ease of calculation. In the one-dimensional case, the choice of norm is not critical because the
update-direction and the direction of steepest-descent in any norm will always be the same. In two or
more dimensions, however, the update-direction and steepest-descent direction of any norm may not
always coincide and there may be as much as a 90° angular difference between them. For non-linear
transconductive elements, this situation occurs often with the application of the L,-norm. We introduce
a new norm, the ‘Nu’-norm, which has its steepest-descent direction coincident with the Newton-update.

The Nu-norm is given by equation 2 and the gradient with respect to u is given by equation 3:

1
Nyl G(u)) = [GT(M)H'T(NOH" (MJJG(H)] . (2]

Vi Nnul(GW)) = ——— TR Ta)H ()G(w) 3]
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where H(u) and H(y,) are the Jacobians of G(-) evaluated at the points u and wu,, respectively. When
evaluated at the iterate (u = u) the steepest descent direction of Ny, (G(uy)) coincidents with 8u;. How-
ever, the steepest descent in L,-norm is coincident to the update only when G(u,) is proportional to one
of the eigenvectors of H™T(u)H™ (uy).

Figure 1 shows a transconductance topology commonly used to model field-effect and bipolar
transistor devices. This circuit contains two nodes with an input voltage V,,, applied to node 1 via a
conductance g;,. An output current which is functionally related to the input voltage V, is generated at
node 2 by the transconductance generator /(V;). A load conductance g; is connected between node 2
and ground, producing a voltage gain at node 2. This circuit is unidirectional in behavior and an
applied voltage at node 2 does not produce a current or a voltage gain at node 1.

Applying Kirchoff’s current law at each node, the non-linear system of equations is extracted as:

sV | [gin* (V) — Vi)
GUVD = loviw)| = 1) + g*v, Bl
where gin is the input conductance, g/ is the output conductance, and /(V,) is a non-linear monotonic
function given by I(V,) = 0 for V; < 0 and I(V,) = GmV,> for V, > 0. Figure 2 shows the contour graph
of G(*) in the Ly-norm. (This and the following contour graphs employ a gray-scale to indicate the
height of the contour lines. A darker line corresponds to a higher contour line.) A steep canyon struc-
ture is present in this graph and curves in a smooth ftrajectory towards the solution at (V,,V,) = (1,-4).
The large arrows on the graph in Figure 2 are the Newton-update directions for the initial guess and for
the iterates #10, #20, #30, #40 and #45. The iterates started with the initial guess of (V;,V3)=(0,0) and
each subsequent iterate was chosen such that the L,-norm was minimized along the Newton-update
direction specified by the previous iterate. The small arrow accompanying each Newton-update



direction is the steepest-descent direction in the Ly-norm. On the initial iterate, the two directions coin-
cide but become nearly orthogonal at subsequent iterates, differing by an average of 89 degrees. In
general, the first update moves the first iterate into the floor of the canyon and the remaining updates
move the iterates along the floor until the solution point is found. For this and other non-linear prob-
lems, the curved trajectory of the canyon floor severly limits progression along the update direction.
Only a small value of T is required to send the progression quickly up the steep canyon walls.

Applying the same initial guess and iterate generation scheme in the Nu-norm results in five itera-
tions. Figures 3a-b show the contour graphs of the Nu-norm for the initial guess and the second iterate.
The canyon structure still appears in the these contour graphs but, because steepest-descent and Newton
update are always coincident at the iterate, each update-direction faces into the canyon and never lies
on the canyon floor.

Figure 4 shows three test circuits used in our comparison of the L,- and Nu-norms with SPICE.
Each transistor is modeled with a three terminal, seven node topology detailed in reference [5] . Circuit
#1 is a simple driver connected to a low conductance load, Circuit #2 is a series of five chained E/D
inverter stages, and Circuit #3 is composed of ten enhancement transistors stacked on top of one
another (drain to source) with a common gate potential (Only five transistors are depicted for a more
compact presentation). Circuits #2 and #3 represent some of the most common circuit configurations as
~well as some of the most difficult in terms of convergence.

Table 1 compares the performance of the two norms and the standard source-stepping technique on

each of the test circuits. Each circuit is converged to sixteen different bias conditions and the
minimum, the average and the maximum number of iterations for each circuit is given by Table 1.

Comparison of Methods
Method : ‘It.erauons <m1mn_mm: average, max;mulr-uv :
Circuit #1 Circuit #2 Circuit #3
Source Stepping < 3,165 648> | < 5, 21, 35> | < 3,3860,31230>

Norm Reducing (NL,‘) < 2, 7, 12> | < 2, 47, 200> < 2, 14, 53>
Norm Reducing (Nyp) [ < 2, 9, 12> [ < 2, 15, 31> < 2. 1L 2B/

able 1: mparison of M s

The source-stepping approach gives the worst overall performance for all three circuits and the Nu-
norm based method give the best. The greatest improvement occurs in the high-gain configuration of
circuit #2 where the Nu-norm takes a third to a seventh of the Newton steps required by the L,-norm.
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Figure 1; Common transconductance topology uvsed to model FET
and bipolar transistor current gain,
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Figure 3s; Contour graph of the Nu-norm for the nonlinear trans-
conductance model s seen st the initial guess. The nom is
presented as a function of the input (V) and output (V) volages.
The contour lines are draw at logarithmic intervals.
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Eigure 2: Contour graph of the Lynorm with the ponlinear tran-
sconduciance model as a function of the input (V) and cutput (V)
voluages. The contour lines are draw st logarithmic intervals.
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Figure 3b; Contour graph of the Nu-nomm for the ponlinear trans-
conductance model as seen & the second iterate. The morm is
presented as & function of the input (V;) and output (V3) voltages.
The contour lines are draw at Jogarithmic intervals.
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Figure 4; Topologies of the three test circuits. Circuit #1 is an invernter with a Jow conductance

load. Circuit #2 is s series of five enhancement/depleti

ion inverter stages. Circuit #3 is u stack of

ten enhancement transistors with a common gate potential (Only five are thown for compactness).





