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The Peierls phase conveniently describes the orbital effect of a relatively weak magnetic 

field 𝐁 on atomistic systems represented by a tight-binding-like Hamiltonian [1]. The phase 

multiplies the Hamiltonian elements between couples of atomic orbitals and is proportional to 

the line integral of the vector potential 𝐀 (with 𝐁 = 𝛁 × 𝐀) along the straight path between 

them. The Peierls phase changes under gauge transformations 𝐀 → 𝐀 + 𝛁χ, but its circulation 

as well as the physical observables are gauge independent. 

For periodic systems, or systems with periodic components (as contacts and probes in a 

Hall bar), a generic gauge will not guarantee the Hamiltonian to be invariant under spatial 

translations. However, this invariance is desirable to allow the use of convenient techniques 

for electronic structure and transport simulations, as the Bloch theorem for the Hamiltonian 

diagonalization, or the Sancho-Rubio algorithm [2] for determining the contact self-energies.  

In this contribution, by a proper gauge choice, I will provide general ready-to-use formulas 

to determine Peierls phase factors that preserve the translation symmetry of any periodic 

quasi-one-dimensional or two-dimensional system under a homogeneous magnetic field [3]. 

Some examples of applications will be briefly illustrated, see figures. First, I will present the 

case of a metallic carbon nanotube in high magnetic fields. Depending on the angle between 

field and nanotube axis, the electronic structure exhibits a rich physics ranging from Landau 

states to Aharonov-Bohm effect. Then, based on Green’s function transport simulations, we 

will discuss the importance of disorder for the observation of extended Hall resistance 

plateaus in 2DEG Hall bars. Finally, I will present the case of periodic 2D graphene with 

Gaussian bumps, where the induced strain makes Landau levels dispersive and lifts the valley 

degeneracy.  

The provided formulas represent a practical and useful tool for the simulation of electronic 

and transport properties of mesoscopic systems in the presence of magnetic fields. 
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Fig.1: Sketch of a metallic carbon nanotube with chirality 

(204,0), corresponding to a circumference of 50 nm. The 

homogeneous magnetic field B forms an angle  with the 

nanotube axis. 

 Fig.4: Longitudinal RL and Hall RH resistances as a function of 

the magnetic field B in clean and disordered Hall bars with the 

geometry illustrated in Fig. 3, for average charge density 

3x1013 e/cm2, temperature 77.36 K and drain current 0.1 A. Hall 

plateaus are observed in the disordered case, in correspondence 

of the RL dips. The horizontal lines indicate the resistance 

quantum h/(2e2)≈12.9 k and its submultiples.  

   

 

 

 

Fig.2: Band structure of the metallic carbon nanotube of Fig. 1 in 

the absence and in the presence of a 100 T magnetic field with 

=0 and 45°. The magnetic field along the nanotube axis opens a 

small gap due to Aharonov-Bohm effect. When the magnetic field 

is not along the nanotube axis, dispersive Landau levels appear. 

 Fig.5: Superlattice of bumps in two-dimensional graphene. The 

bumps have a Gaussian profile with a height of 1 nm. This results 

in a tensile strain on the sides of the bumps. The superlattice is 

triangular and thus has a hexagonal Brillouin zone.  

   

 

 

 
Fig.3: Six-terminal Hall bar obtained in a GaAs/AlGaAs 2DEG 

with effective mass 0.068 me. Terminals 1 and 2 are source and 

drain contacts, while terminals 3-6 are voltage probes. In the 

presence of impurities (here with density 7x1010 cm-2 and 

Gaussian potential profile with maximum height 150 meV) and 

under high magnetic fields, the current flows along the edges, 

while localized states form around the impurities, thus pinning the 

Fermi energy and leading to extended Hall resistance plateaus, 

see Fig. 4. The color map represents the density of states in such a 

situation. The red arrows indicate the current flow. 

 Fig.6: Low-energy band structure for 2D graphene in the absence 

(left) and in the presence (right) of the superlattice of periodic 

bumps described in Fig. 1, under a 22.74 T orthogonal magnetic 

field. The first Brillouin zone is indicated by a white hexagon. In 

flat graphene, the usual sequence of Landau levels appears. 

Strain makes Landau levels dispersive and removes the valley 

degeneracy. Only the Landau level with zero energy is unchanged, 

since its value is independent of the Fermi velocity of low energy 

electron, which is affected by strain. 

 

Book of Abstracts IWCN 2021

ISBN 978-89-89453-30-7 106


