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  The deterministic numerical solution of the Boltzmann Transport Equation requires 
Gigabytes of main memory even for spatially 2D device simulations. While detailed 3D device 
simulations have already been demonstrated using spherical harmonics expansions [1], it is 
desirable to run simulations at higher resolution - thus requiring even more memory - and to 
further reduce simulation time. To tackle both challenges, we have investigated how the free 
open-source simulator ViennaSHE [1] can be extended to compute the first scalable numerical 
solutions of the Boltzmann Transport Equation for semiconductors on large-scale clusters and 
supercomputers. In this work we focus on the linear solver stage, for which we have evaluated 
an algebraic multigrid solver (schematically shown in Fig. 1) [2][3][4] and a parallel sparse 
direct solver [5], both available through the PETSc library [6]. 
  We have simulated the carrier distribution for a given electrostatic potential distribution in a 
3D FINFET (Fig. 2) and a 2D n-channel MOSFET. Fig. 3 and Fig. 4 show our observed change 
of total solver time as the workload increases in proportion to the number of processes (‘weak 
scaling’); this is typical for simulations that are re-run on a finer grid. We observe a near-optimal 
performance gain proportional to the number of processes used. 
  When keeping the problem size constant and increasing the number of processors to reduce 
simulation time (‘strong scaling’), we see that the simulation time can be reduced by a factor 
of 2.25 when employing up to 16 processes for the MOSFET, and by a factor of 1.8 for the 
FINFET with 8 processes.  
  In both cases, algebraic multigrid has been identified as a promising candidate for scaling to 
hundreds of processes, while a parallel sparse direct solver provides the best performance at 
moderate problem sizes. 
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Fig. 1: A 2 level Multigrid hierarchy, where the original linear 

problem is Restricted two times to a coarsen problem, which is 

solved, and the solution is Interpolated twice to the original 

problem, then smoothed to remove some high frequency error. 

Fig. 2: Electrical Potential for the FINFET when applying 0.3 Volt 

between the source and the drain with 0.8 Volt at the gate. 

  
Fig .3: Weak-scaling analysis of the MOSFET simulation. The 

direct solver is better for small problems, while multigrid 

achieves slightly better weak-scalability. 

Fig. 4: Weak-scaling analysis of the FINFET simulation. The parallel 

solvers show large overhead when run with only one process, but are 

up to a factor of 2.25 faster for the larger problem sizes. 

 

 

Fig. 5: Strong-scaling analysis of the MOSFET simulation.  The 

AMG solver has higher benefit from additional processes but is 

still slower than the sparse direct solver overall.  

Fig. 6: Strong-scaling analysis of the FINFET simulation. Parallel 

AMG outperforms the parallel direct solver as soon as at least 4 

processes are employed. 
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