IWCN 2021

Two-Dimensional Diffusion Process Simulation of Si-Implanted Ga₂O₃

In Ki Kim, and Sung-Min Hong

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Cheomdangwagiro-123, South Korea smhong@gist.ac.kr

Gallium oxide (Ga₂O₃) is a promising material for power electronics devices and UV detectors owing to its wide bandgap (~ 4.9 eV) [1]. The free electron concentration of Ga₂O₃ can be controlled in bulk growth process such as Molecular Beam Epitaxy or mist-Chemical Vapor Deposition process [2]. However, the ion implantation and the thermal annealing are required to form ohmic contacts of source and drain regions with selective and high concentration doping [3]. A simulation model of the dopant diffusion in Ga₂O₃ is required to predict the dopant distribution after the annealing process. In this work, we report twodimensional simulation of Si dopant diffusion as a function of time at 1100 °C annealing temperature in O₂ and N₂ ambient. A diffusion model reported in [4] is adopted in the simulation and implantation profiles of dopant and damage are calculated from Stopping and Range of Ions in Matter (SRIM) simulation. The simulation is conducted in a 500 nm \times 2000 nm Ga₂O₃ region. Figure 1 (a) and (b) show the profile of implanted Si into Ga₂O₃. The implantation profile along the vertical direction is calculated for 3.24×10^{13} cm⁻²/30keV, 5.72×10^{13} cm⁻² 2 /60keV, and 8.1×10¹³ cm⁻²/90keV with the SRIM simulation. The implantation window is open from -700 nm to 700 nm in the lateral position. Subsequently, the diffusion simulation is carried out during 60 s at 1100 °C temperature in either O₂ or N₂ ambient. In Figs. 2 and 3, the dopant profile is shown at three representative time instances, 20 s, 40 s, and 60 s. In the O₂ ambient simulation, the peak concentration of Si decreases to below 4.7×10^{18} cm⁻³ from 1.85×10^{19} cm⁻³, as shown in Fig. 2. Otherwise, almost no redistribution of Si is occurred in the N₂ ambient as shown in Fig. 3. In conclusion, the dopant diffusion of Si-implanted Ga₂O₃ has been simulated. Since the generated vacancy type is different according to the ambient, the Si redistribution is significantly affected by the ambient.

Acknowledgement: This work was supported by the National Research Foundation of Korea grant funded by the Korea government (NRF-2019R1A2C1086656 and NRF-2020M3H4A3081800) and the GIST Research Institute grant funded by the GIST in 2021.

[1] S. J. Pearton et al., Appl. Phys. Rev., 5, 011301 (2018).

[2] M. J. Tadjer et al., ECS J. Solid State Sci. Technol., 8, Q3133 (2019).

[3] M. H. Wong et al., IEEE Elect. Dev. Let., 40, 3 (2019).

[4] R. Sharma et al., AIP Adv., 9, 085111 (2019).

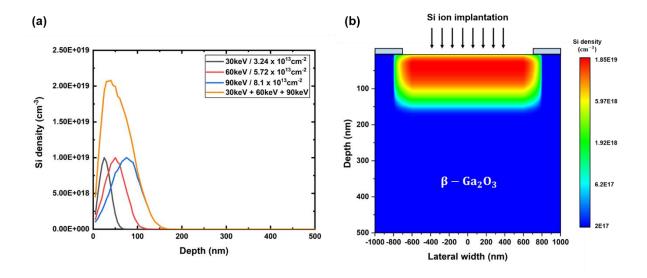
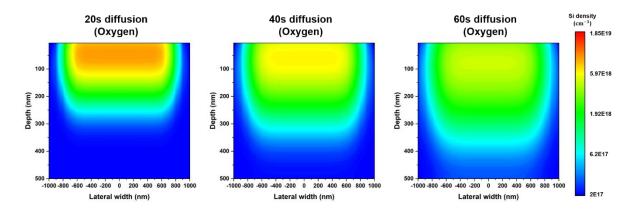



Fig.1: Implantation profile of Si. (a) Implanted Si profile as a function of depth calculated from the SRIM simulation. (b) Two-dimensional implantation profile of Si. The implantation window is open from -700 nm to 700 nm in the lateral position.

Fig.2: Simulated two-dimensional Si profile after annealing at 1100 C *temperature (20 s, 40 s, and 60 s) in the O*₂ *ambient.*

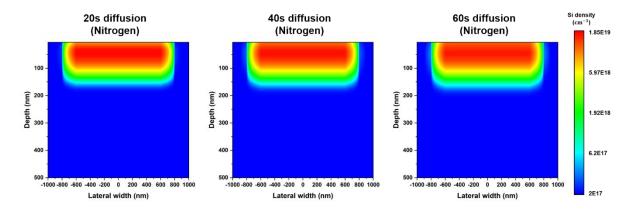


Fig.3: Simulated two-dimensional Si profile after annealing at 1100 °C temperature (20 s, 40 s, 60 s) in the N₂ ambient.