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The phonon Boltzmann equation has been widely used in explaining heat transport through 

nanostructures. However, it becomes no longer valid when the characteristic size of system 

becomes comparable to or even smaller than the dominant wavelength of phonons, which often 

happens at very low temperature or in very small nanostructures. In this work, we will propose 

a methodology to describe the coherent heat transport in nanostructures based on the more 

fundamental quantum kinetic equation for single-phonon density matrix (Eq. (3) in Page 2) [1]. 

We also develop a finite difference method for numerical solution of the quantum kinetic 

equation. The macroscopic field variables including the energy density and heat flux are related 

to the diagonal components of the density matrix (Eq. (4) and Eq. (5) in Page 2) [2]. The new 

methodology is demonstrated through modeling heat transport in silicon thin film with a 

thickness less than 10nm at different temperatures. The results indicate correlation behaviors 

between different phonon modes at very low temperature, and are reduced to the solution of 

classical phonon Boltzmann equation around room temperature. With the help of Wigner 

function (Eq. (6) in Page 2), it is also shown that the phonon Boltzmann equation is recovered 

from the quantum kinetic equation in the absence of correlations. The present work will promote 

the understanding and modeling of coherent phonon heat transport in crystals. 
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 The equation of density matrix is the fundamental equation in quantum statistical 

mechanics [1]: 
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where ˆ
t  is the many-body density matrix and Ĥ is the Hamiltonian operator of the system. 

The solution of Eq. (1) is not easy even for very simple cases. Therefore the one-phonon density 

matrix is introduced as [1]: 
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where ‘kj’ denotes a phonon mode, ˆ
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  being the phonon creation operator and 

destruction operator respectively. As a first step, we consider the harmonic approximation such 

that  
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k . Combining Eq. (1) and Eq. (2), we obtain the quantum kinetic 

equation of phonons [1]: 
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A finite difference scheme is then devised for numerical solution of Eq. (3). In the harmonic 

approximation, the calculation of energy density and heat flux is mainly contributed by the 

diagonal component of the one-phonon density matrix [2]: 
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To obtain the local energy density and heat flux in Eq. (4) and Eq. (5), we have to use the wave 

packet representation of phonons through a superposition of normal modes with a small spread 

of wave vectors. 

The phonon Wigner function can be defined as [1]: 
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where    , ,j

t t jjN j j N  
  k k k k   in the absence of correlation between different phonon 

polarizations. With the help of Eq. (6), one can derive from Eq. (3) the phonon Boltzmann 

equation without collision term: 
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where the phonon group velocity is:    g jj   v k k k  . The phonon collision term will be 

recovered when the anharmonic terms are considered in the Hamiltonian operator. 

  




