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Quantum information and quantum communication are both strongly based on concepts of 

quantum superposition and entanglement. Entanglement allows distinct bodies, that share a 

common origin or that have interacted in the past, to continue to be described by the same wave 

function until evolution is coherent. When two bodies interact in a quantum manner, they 

become entangled, which implies that they are now described by a single wave function and are 

no longer two distinct bodies. Even after they have ceased to interact and have moved some 

distance away, they remain entangled until some decoherence process acts upon them [1,2]. So, 

there is an equivalence between coherence and entanglement. However, in experiments, one 

must face the fact that entanglement is difficult to measure. There is no physical variable whose 

Eigenvalue yields the entanglement. Hence, researchers have investigated for years to devise 

measures of entanglement [3]. Most of these, however, do not provide a clear visualization of 

the entanglement. But, it has been demonstrated that the Wigner function does provide a clear 

visualization of entanglement [1], and is used intensely today in optics [2]. Expanding upon this 

notion (and based on a recently formulated Wigner coherence theory [4]), we discuss the 

relation between quantum coherence and quantum interference and the negative parts of the 

Wigner quasi-distribution, using the Wigner signed-particle formulation [5]. A straightforward 

physical problem consisting of electrons in a nanowire interacting with the potential of a 

repulsive dopant placed in the center of it creates a quasi-two-slit electron system that separates 

the wave function into two entangled branches, as indicated in Fig. 1. The analysis of the Wigner 

quasi-distribution establishes that its negative part, Fig. 2, is principally concentrated in the 

region behind the dopant between the two entangled branches, maintaining the coherence 

between them. Moreover, quantum interference is shown in this region both in the negative and 

in the positive part, shown in Fig. 3. Fig. 4 (using a rotated viewpoint) illustrates how this effect 

is produced by the superposition of Wigner functions evaluated at points of the momentum 

space that are symmetric with respect to the initial momentum of the injected electrons. This 

shows that a Wigner signed-particle approach enables to analyze coherence and entanglement 

in nanoelectronics devices as it allows to directly reconstruct the Wigner quasi-distribution. 
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Fig.1: Experimental setup.  Fig.2: Spatial distribution of the negative part of the Wigner 

distribution. 

 

 

Fig.3: Spatial distribution of the positive part of the Wigner 

distribution. 

Fig.4 Sum of the Wigner quasi-distribution in the points (kx1, ky1) = 

(0.26 nm-1 , 0.89 nm-1 ) and (kx2 , ky2).= (-0.26 nm-1 , 0.89 nm-1 ).  

 

 

 

 

 

 




