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Electron spin offers extraordinarily attractive possibilities in the operation of semiconductor
devices thanks to the speed and low energy consumption in its control [1, 2]. One application
and future candidate for high performance computing and memory applications with ultra-low
power consumption are spin field effect transistors (SpinFETs). Originally proposed by Datta-
Das [3], spin transport in a hot electron transistor was demonstrated in [4].

In this work, 2D finite-element quantum-corrected ensemble Monte Carlo simulation code to
model a realistic nanoscale Ing3Gao7As MOSFET [6] (Fig. 1), designed on ITRS prescriptions
[6], was augmented to incorporate electron spin-degrees of freedom and spin-orbit coupling to
simulate electron spin transport in a realistic nanoscale device. The dimensions of the
Inp3Gao.7As MOSFET are illustrated in Fig. 2. The device is similar to the Datta-Das SpinFET
[3] but only the source electrode is ferromagnetic. The spin states are described by a spin density
prr(t) Pn(t))
pru(t)  pu(t)
where py and p;; are the population of spin-up and spin-down electrons, respectively, and

matrix: p = (

the diagonal elements p;; and p;; represent the coherence. The spin degrees of freedom of
the electrons are coupled to the orbital degrees of freedom described by the wavevector k via a
spin-orbit coupling Hamiltonian. Dresselhaus and Rashba coupling are the two main
contributions to spin-orbit coupling. Dresselhaus coupling is due to asymmetry in a crystal,
given by the Hamiltonian
Hp = FD(kaz) (k,0, — kxox)
Rashba coupling is due to potential asymmetry in the quantum well, given by
Hg = ag (ky0y — ky0,)

This assumes that the channel is in the [001] direction, x is the transport direction along the
channel, and z is the growth direction orthogonal to the quantum well. @y and I}, are Rashba
and Dresselhaus coupling constants, respectively, which are material, strain and temperature
dependent/ We monitor the 3D magnetization components over varying drain and gate biases
at fixed large gate (0.7 V) and drain biases (0.9 V), respectively, as shown in Figs. 4 and 5. Fig.
6 presents magnetization components as a function of temperature showing substantial increase
in magnetization components of about 65% when lattice temperature drops from 300 K to 77 K

due to a substantial reduction in electron-phonon scattering.

ISBN 978-3-9504738-0-3 Presentations 43



Book of Abstracts

IWCN 2019

However, Figs. 8 and~9 demonstrate that increasing the source-to-gate and gate-to-drain
spacers can enhance the spin recovery, reported initially in the 25 nm gate length Ino.3Gao7As
MOSFET [7]. The polarisation of the electrons initially decays along the channel but
surprisingly partially recovers as the electrons reach a high fringing electric field on the drain
side of the gate. There they undergo highly non-equilibrium transport during their acceleration,
limited mainly by emission of polar phonons. The drain electrode was deliberately chosen to be

non-magnetic so that recovery of the magnetization cannot be attributed to existing polarized

carriers inside the drain.
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Fig. 1:
Inp.2Gag rAs showing spin polariza-
tion of electrons along n-channel with
4% strain (red) and unstrained (pur-
ple).

3D model of the studied
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Fig. 2: Cross-section with dimensions
of the 25 nm gate length, n-channel
[n.;J.gG&[L-,-AS MOSFET.
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Fig. 3: Rashba coupling constant
along the 25 nm gate length chan-
nel of Ing 3Gag s As MOSFET. The
zero in the channel is set at the drain
side of the gate.
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Fig. 4: Magnetization components
of spin injection (averaged over 10
runs) vs. drain bias at Ve=07 V
with indieation of error in averages.
The transport direction along the -
axis. The lines are only a guide to
the eye.
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Fig. 7: Magnetization components
(averaged over 10 runs) vs. the gate
length of the transistor at Vo=0.TV
and Vp=0.9 V. The lines are only a
guide to the eve.
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Fig. 5: Magnetization components
of spin injection (averaged over 10
runs) vs. gate bias at Vp=09 V
with indication of error in averages.
The transport direction is along the
T-axis.
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Fig. 8: Magnetization components
(averaged over 10 runs) vs. the
source-to-gate spacer of the transis-
tor at V=07 V and Vp=0.9 V.
The lines are only & guide to the eve.
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Fig. 6: Magnetization eomponents
of spin injection (averaged over 10
runs) vs. lattice temperature at
Ve=0.T V and Vp=0.9 V with er-
rors in averages. The transport di-
rection is along the r-axis.
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Fig. 9: Magnetization components
(averaged over 10 runs) vs. the
gate-to-drain spacer of the transis-
tor at V=07 V and Vp=0.9 V.
The lines are only a guide to the eye.
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