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Nanosheet silicon channel transistors laterally stacked in pillars are one of the promising solutions for
5~nm technology nodes and beyond for logic applications [1]. The nanosheet transistor architecture with
a wrap-around-gate (WAG) contact can deliver the same excellent electrostatic integrity as SOI FinFETs
[2] or nanowire GAA FETs [3] while can deliver a larger on-current required by ITRS 2.0 prescriptions
[4] and be fabricated with fewer deviations from the already established FinFET manufacturing. The
most importantly, the fabrication of nanosheet FETs can overcome many of patterning challenges present
in a nanoscale fabrication of stacked nanowires and closely stacked FinFETs [1].

In this work, we employ in-house 3D finite element (FE) Monte Carlo (MC) and drift-diffusion (DD)
device simulation tools with quantum corrections to accurately model Si nanosheet transistors with the
WAG illustrated in Figs. 1 and 2. The quantum corrections in the 3D FE MC simulations [5] use solutions
of 2D Schrodinger equation (SchE) [6] assuming longitudinal and transverse electron effective masses
in Si and wavefunctions penetrating into a surrounding high-$\kappa$ dielectric layer [7,8]. The SchE
is solved on 2D slices across the channel with a non-uniform distribution dependent on a gradient of
electron density along the channel. The 3D FE MC simulations use Fermi-Dirac statistics in electron
scattering with ionised impurities via static screening with a self-consistently calculated Fermi energy
and electron temperature in real space of a device [8,9]. Two types of quantum corrections can be
included in the 3D DD simulations: (i) 3D FE density gradient (DG) [10] which require calibration
parameters and (ii) 2D SchE on slices along the channel as in the 3D FE MC simulations. The quantum
corrections using eigenstates of the 2D SchE, y;(y,z;E;), and eigenenergies, E;, have been incorporated
into the 3D FE DD simulations for this work. A quantum-mechanical electron density in Boltzmann

approximation (6 equivalent valleys) can be obtained as [7]:

( )_6\/21Tm*kBT | B2 [Epn_Ei]
Nq (yz2)= A 2i Wi (WZ;E;|” exp KT

where kg is the Boltzmann constant, T'is the electron temperature, and Ef, ~is the electron quasi-Fermi
level. The 2D quantum density, n, (Y, 2), is interpolated using spline functions to a 3D device density
domain, ng,(r). A quantum correction potential, V;. (r), reads [6]:

Vo(r) = kT log[ng(m)] = V() — kgT log[nf(r)]

where V(r) is the potential energy, and nfff(r) is the effective intrinsic concentration.
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A schematic cross-section of a stack with three Si nanosheet transistors with the WAG is illustrated in
Fig. 1 which closely follows the 12 nm gate length nanosheet transistor reported in Ref. [1] by IBM,
Samsung, and Global Foundries consortium. Fig. 2 shows a cross-section of three nanosheet transistors
made of the outer metal gate and inner polysilicon gate closely surrounding a nanosheet p-type doped
Si body covered with a high-k dielectric layer [1]. The device has a Si channel with a 50 nm width and
a height of 5 nm surrounded by a high-k dielectric layer of a thickness of 1 nm and a dielectric constant
of 3.9. We have then studied a performance of the nanosheet transistors when their width would be
scaled down in order to reduce area of the CMOS to acquire a large transistor density on a chip. Fig. 3
illustrates quantum corrected electrostatic potential in cross-sections of a nanosheet FET scaled from a
width of 50 nm to 30 nm, 10 nm, and 5 nm.

The comparison of the Ip-Vg characteristics obtained from 3D FE DD and MC simulations with
experimental data are presented in Figs. 4-5 at a low drain bias of 0.0 V and a high drain bias of 0.7 V,
respectively. The source/drain n-type doping has been reverse engineered using a Gaussian doping
profile with a peak doping of 5x10' ¢cm™ and a spread oy of 3.45 nm. The DD uses Caughey-Thomas
doping dependent low-field electron mobility model combined with perpendicular (critical electric field)
and lateral (saturation velocity) electric field models with a calibrated low-field mobility of 50.24 cm?*/Vs,
a saturation velocity of 1.8x10° cm/s (1.7x107 cm/s), and a critical electric field of 1x10¢ V/em (1x10°
V/em) at Vp = 0.05 V (Vp=0.7 V), respectively. The interface roughness which plays a crucial role in
multi-gate transistors at a high drain bias [5] assumes a RMS height of 1.5 nm and a correlation length
of 1.7 nm. The DG quantum corrected DD exhibits only 2% difference between more accurate SchE
quantum corrections used in DD and MC simulations while a difference between the SchE quantum
corrected DD and MC simulations is nearly negligible. Figs. 6-8 show Ip-Vg characteristics at a high
drain bias of 0.7 V when the width of Si nanosheet is reduced from 50 nm to 30 nm, 10 nm, and 5 nm.
The respective reduction in the drain current normalised to a nanosheet circumference obtained from the
3D MC will be 10.7%, 34.2%, and 48.7% making the nanosheet width scaling below 30 nm meaningless.
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Fig. 1: Schematic cross-section of a typical Si nanosheet
multi-gate transistor with three integrated nanosheets [1].
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Fig. 4 Ip-Vg characteristics at Vp=0.05 V
for the 12 nm gate length wrap-around chan-
nel nanosheet multi-gate FET comparing drift-
diffusion simulations using density gradient
(DD DG) and SchE (DD SCH) quantum correc-
tions against experimental measurements [1].
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Fig. 7: Ip-Vg characteristics at Vp=0.7 V for
the 12 nm gate length nanosheet FET obtained
from SchE quantum corrected Monte Carlo sim-
ulations (MC SCH) with a nanosheet width re-
duced to 10 nm. The results from quantum cor-
rected drift-diffusion simulations (DD DG and
DD SCH) are for comparison.
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Fig. 2: A finite element mesh to ac-
curately describe one nanosheet wrap-
around channel multi-gate transistor.
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Fig. 5: Ip-Vg characteristics at Vp=0.7 V

for the 12 nm gate length wrap-around chan-
nel nanosheet multi-gate FET comparing drift-
diffusion simulations using density gradient
(DD DG) and SchE (DD SCH) quantum cor-
rections, and SchE quantum corrected Monte
Carlo simulations (MC SCH) against experi-
mental measurements [1].
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Fig. 8: Ip-Vg characteristics at Vp=0.7 V for
the 12 nm gate length nanosheet FET obtained
from SchE quantum corrected Monte Carlo sim-
ulations (MC SCH) with a nanosheet width re-
duced to 5 nm. The results from quantum cor-
rected drift-diffusion simulations (DD DG and
DD SCH) are for comparison.
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Fig. 3: Potential cross-section in the
middle of the gate for nanosheet FETs
with widths of 50, 30, 10 and 5 nm
from top to bottom, respectively, at
Vp=07Vand Vg =10V,
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Fig. 6: Ip-Vg characteristics at Vp=0.7 V for
the 12 nm gate length nanosheet FET obtained
from Schridinger Equation quantum corrected
Monte Carlo simulations (MC SCH) with a
nanosheet width reduced to 30 nm. The results
from quantum corrected drift-diffusion simula-
tions (DD DG and DD SCH) are for compari-
son.
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Fig. 9: Ip-Vg characteristics at Vp=0.7 V

for the same nanosheet FET with a nanosheet
width of 50 nm but assuming n-type S/D of
2% 102°cm~ obtained from SchE quantum cor-
rected MC simulations (MC SCH). The results
from quantum corrected DD simulations (DD
DG and DD SCH) are for comparison.
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