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A well-known challenge in quantum theory is the description of the measurement process [1,2]. After more
than one century since the birth of quantum mechanics, this fundamental problem still remains timely. In
fact, our basic conception of quantum reality depends on how we ultimately solve this problem. The usual
formulation of quantum mechanics (the so-called orthodox theory) argues that two fundamental laws
describe the evolution of any system: (i) a unitary and linear law (given for example by the Schrodinger
equation) when the system evolves without being measured and (ii) a non- unitary and non-linear law (the
so-called collapse law) when it is being measured.

In principle, the correct modelling of any electron device within the orthodox theory requires including both
laws. However, there is a large list of quantum transport models in the literature that do not treat explicitly
the collapse law, but they only include analytical or numerical solutions of the Schrddinger (parabolic band
structure) or Dirac (linear band structure) equations. Notice that it is well-known that the measurement
problem cannot be generally solved in a quantum system by invoking decoherent phenomena (like phonon
or impurity collisions) alone. One of the reasons that can explain why the measurement problem is usually
forgotten in the quantum modelling of electron devices is that there is no such problem in classical or semi-
classical modelling.

In this conference we will explain for which type of observables we can expect to induce erroneous
predictions of the performance of quantum devices when neglecting the measurement problem. Based on
ergodic arguments, the DC performance of quantum devices does not require the post-evolution of the
system after measurement and the collapse law can be ignored (like in the successful Landauer model).
However, the computation of (zero or high frequency) noise through the correlations of the measured
currents at different times requires the inclusion of the collapse law (see Figs. 1 and 2). Similarly, for high
frequency (AC) predictions beyond the quasi-static approximation, where a multi-time measurement of the
current is necessary, the collapse law plays also a significant role (see Figs. 3).

In this conference we will also argue that there exist alternative valid theories that allow us to solve the
measurement problem in a rather trivial manner [2-5]. For example, in addition to the wavefunction,
Bohmian theory introduces well defined quantum trajectories in the description of a quantum state. In this
way, this theory is able to solve the measurement problem without the need of invoking the collapse law.
Following these ideas, the group of Dr. Oriols has developed a quantum electron transport simulator, the so-
called BITLLES simulator [6], that can be used to model the DC, AC or high- frequency performance of any
quantum device without the need of any further conceptual difficulty associated to the quantum
measurement problem [2-4] (see Figs. 1, 2, 3).

In summary, we provide two answers to the question posed in the title. First, if you want to use the orthodox
theory to provide noise and AC predictions beyond the quasi- static approximation you do effectively need
the collapse law. Contrarily, the answer is no if you choose to model your quantum device with an alternative
formulation of quantum mechanics. For example, within Bohmian mechanics, a general purpose simulator
can be developed to provide DC, AC and noise performances of state-of-the- art nanoscale devices without
the need of invoking the collapse law [2-4].
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Figi. Time dependent simulation of the electrical current measured in the
collector terminal of a RTD device for a constant flux of injected electrons (all
with the same energy) impinging upon a double barrier. The transmission
coefficient is T=0436. Two different models are used in the current
computation: (i} (in black) we use the orthodox model without collapse law to
compute guantum transport by just solving the time-dependent solution of the
Schrodinger equation. (i) in red, a Bohmian solution which uses the orthodox
wave function plus trajectories that include the randomness of the
measurement problem by the selection of the initial position of the trajectory
that determines if the electron is either transmitted or reflected. The charge
transmitted in each pulse is the average value T (being g the electron
charge) in the first model and q or 0 in the second one. Notice that the

average results (DC current) of both models are identical.
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transport models considered in Fig 1. Fano factor, F(0)=S(0)/{2ql), defined
as the power spectral density at zero frequency S(0) divided by the average
current | and the electron charge g, is plotted. The first model (black line)
provides zero noise at low frequency F(0)=0 since there is no randomness
in its current in Fig. 1. Notice that the Schrédinger equation alone (without
the collapse law) is a deterministic equation without randomness. The
second model (red ling) provides a Fano factor equal to F(0)=1-T=0.564 due
to the randomness of its current seen in Fig 1. The value corresponds to the
well-known result of the fluctuations in the current due to the tunnelling
barrier with transmission coefficient T (such process follows a Binomial
probability distribution with probability equal to T). Notice the differences in
the spectrum of the noises of both models at either zero or high frequencies.

Fig.3 Power spectral density S(f) corresponding to the simulation of one
single electron of figure 1 (not a constant flux) computed with the two models
considered in this work. Since transmitted and reflected particles have the
same description in the first model (black line) only one plot is represented.
In the second model (red lines), we plot S(f) corresponding to a reflected
particle and another S(f) for a transmitted one. At zero frequency, when a
large flux of particles is considered, both models provide the same average
value of 3{0) which corresponds to the DC results. The two red lines
averaged by the transmission coefficient coresponds to the black line at
5(0). However, at high frequency, important differences remain. As seen in
figure 1, the result of the second model corresponds to thinner and higher
current pulses that are later translated in the presence of S(f) at higher
frequencies in the power spectral density.
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