
 
 

Figure 1: A snapshot from the first-principles MD simulation of the oxidation process of silicene (Si; yellow, 
O; red, Ag; pink). 

 

  

Figure 2: A bilayer silicene formed in a slit pore sandwiched by CaF2 layers (left: theoretical prediction, right: 
experimental synthesis). 
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Metal-semiconductor (M-SC) contacts play a pivotal role in a broad range of technologically relevant 
devices. Still, their characterization at the atomic-scale remains a delicate issue. One of the reasons is that 
the present understanding relies either on simplified analytical models often parametrized using 
experimental data [1], or on electronic structure simulations describing the interface using simple slab 
calculations [2]. Here we propose a general strategy to model realistic M-SC interfaces by using density 
functional theory (DFT) in combination with the non-equilibrium Green's function (NEGF) method as 
implemented in the Atomistix ToolKit (ATK) simulation software [3]. An accurate description of both sides of 
the interface is achieved by using a meta-GGA functional [4] optimally tuned to reproduce the SC measured 
band-gap, and a spatially dependent effective scheme to account for the presence of doping in the SC side. 
Compared to previous computational methods [2], the present approach has the important advantages of (i) 
treating the system using the appropriate boundary conditions and (ii) allowing for a direct comparison 
between theory and experiments by simulating the I-V characteristics of the interface. We apply this 
methodology to an Ag/Si interface relevant for solar cell applications, and test the reliability of traditional 
strategies [1,2] to describe its properties [5]. Finally, we will describe a novel surface Green’s function (SGF) 
method where the surface is described as a true semi-infinite system and present a number of examples to 
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illustrate how the SGF method gives a number of benefits compared to the slab approach as well as enables 
new type of studies. 

 

Figure 1. Local density of states (LDOS) of the two-probe setup at equilibrium for doping densities of 1018 
cm−3 (a), 1019 cm−3 (b), and 1020 cm−3 (c). The energy on the vertical axis is relative to the system 
chemical potentials. Regions of low (high) LDOS are shown in dark (bright) color. 
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