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Plasmonic response of graphene nanoribbons 
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Plasmonics, as a promising way for shrinking the size of photonic and electronic circuits, has attracted a 
great interest [1], [2]. Plasmons are collective exci- tations of surface electrons in a good conductor and can 
confine the electromagnetic energy beyond the diffraction limit. Conventionally, metals like gold have been 
used as plasmonic materials; however, because of high dissipation in these materials, plas- mons cannot 
propagate long distances. Graphene [3], [4], a  two  dimensional  semimetallic  allotrope of carbon, has 
high electron mobility and has been of a great interest as a novel plasmonic material [5], [6],  [7],  [8]. 

Graphene has a gapless electron band structure with Dirac cones; so, its plasmon dispersion is different 
from the plasmon dispersion in quasi- two-dimensional (quasi-2D) electron systems with a parabolic band 
structure. The plasmon resonances in graphene typically fall into the terahertz and mid-infrared range. Unlike 
in metals, the carrier density in graphene can be controlled by applying a gate voltage, which provides 
plasmon-resonance tunability. However, it has been shown that gaining tunability by putting graphene on 
substrate reduces the plasmon  propagation  length  [7].  However,  by lowering the system dimension and 
moving from graphene to graphene  nanoribbons, one  can de- crease the electron scattering rates. Thus, 
supported graphene nanoribbons (GNRs) have higher electron mobility and offer the tunability feature, as 
well. 

Here, we calculate the plasmon dispersion and plasmon propagation length in armchair graphene 
nanoribbons (aGNRs) and zigzag graphene nanorib- bons (zGNRs) via self-consistent field and Marko- vian 
Master equation  (SCF-MMEF)  [7].  Electrons in supported GNRs, as in every open system, in- teract with a 
dissipative environment. SCF-MMEF is  able  to  capture  all  the  concurrent  dissipative mechanisms,  such  
as  phonons,  ionized  impurities, surface optical (SO) phonons, the line-edge rough- ness. We derive the 
interaction Hamiltonian for electrons and SO phonons in GNRs, and quasi- one-dimensional (quasi-1D) 
systems in general. The SO phonon and electron interaction only requires the momentum conservation along 
the length of the ribbon. This means that a single electron transition can be mediated by a number of SO-
phonon modes, unlike in the quasi-2D systems. As a result, in narrow GNRs, SO-phonon scattering is as 
important as ionized impurity scattering for electron transport. 

By calculating the dielectric function via the SCF-MMEF, we calculate the loss function for GNRs on the SiO2 
substrate. The loss function peaks at the plasmon resonances. The higher the peak, the farther the plasmons 
propagate. In zGNRs, because of heavy carriers (flat energy dispersions) and high scattering rates, plasmons 
are highly damped and the plasmon propagation length barely exceeds 100 nm. The same behavior 
happens in (3N )-aGNRs and (3N +1)-aGNRs, where N is an integer and 3N and 3N +1 are the number  of 
dimer lines. However, in (3N +2)-aGNRs, plasmons can propagate up to a micron. In Fig. 1, the loss function 
of three different (3N +2)-aGNRs on SiO2 is shown. The sheet electron density is ns = 7×1012 cm−2, and the 
impurity density is 𝑁𝑁𝑖𝑖= 4 × 1011 cm−2.  By  increasing  the  width  of  the  (3N +2)- 
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aGNRs, for the same sheet carrier density, the Fermi level increases; as a result, the loss-function peaks get 
higher and narrower (which equals longer plas- mon propagation length). But, this trend stops when the 
Fermi level approaches the second conduction subband. This trend can be seen in Fig. 1. Also, in aGNRs, 
unlike in graphene, plasmons are not totally damped below the highest SO phonon mode. 

 
Fig. 1: The loss function of (left) 20-aGNR, (middle) 32-aGNR, (right) 47-aGNR as a function of the wave 
vector, q, and frequency, 𝜔𝜔. The sheet electron density is 𝑛𝑛𝑠𝑠 = 7 x 1012 cm-2, and the impurity density is 𝑁𝑁𝑖𝑖= 
4x1011 cm-2. All color bars have the same scale. The loss-function peaks are highest and narrowest in 32-
aGNR (middle), which implies a long propagation length. 
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