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In recent decades various transport approaches have been proposed to describe quantum effects occurring 
in nano-devices [1], [2]. Among them, Nonequilibrium Green’s function formalism (NEGF) has been proved 
very suitable at treating inelastic interactions [3]. However, within this formalism the description of inelastic 
scattering is usually based on the computationally expensive self-consistent Born approximation (SCBA). As 
an alternative method to SCBA, we have proposed an efficient technique, the so-called Lowest Order 
Approximation (LOA) coupled with Padé approximants [4], [5]. In this work, we apply this approach to the 
treatment of phonon scattering in two 1D systems where phonon scattering is known to be important: the 
atomic linear chain and the nanowire transistor. In NEGF the interacting Green’s function is calculated by 
combining an electron-phonon self-energy (Ʃ[𝐺𝐺]) with the Dyson equation [3]: 

                                                              𝐺𝐺 =  𝑔𝑔0 +  𝑔𝑔0𝛴𝛴[𝐺𝐺]𝐺𝐺,                   (1) 

where 𝑔𝑔0 is the non-interacting Green’s function. Since Dyson’s equation (1) is non-linear, solving Eq. (1) is 
typically based on the iterative SCBA scheme. Alternatively, we define LOA Green’s functions at a given order 
N in interaction as follows: 

  𝑔𝑔𝑔𝑔 =  𝑔𝑔𝑔𝑔 − 1 +  𝑔𝑔0 ∑ Ʃ𝑁𝑁−1
𝑛𝑛=0 [∆𝑔𝑔𝑔𝑔 − 𝑛𝑛 − 1]  ∆𝑔𝑔𝑛𝑛,   (2) 

where ∆𝑔𝑔𝑛𝑛  =  𝑔𝑔𝑔𝑔 −   ∆𝑔𝑔𝑛𝑛−1 and ∆ 𝑔𝑔0 = 𝑔𝑔0. By using Eq: (2), we can calculate current series 𝐼𝐼𝑁𝑁  =
 𝐼𝐼 (𝑔𝑔𝑔𝑔) and carrier density series 𝜌𝜌N = 𝜌𝜌 (gN) to Nth order in interaction. According to the strength of the 
electron-phonon scattering, the LOA series can diverge. We then use Padé approximant technique to operate 
a convergent resummation. Note that the LOA series can be also coupled to Hyper geometric resummation 
technique [6]. 

We first apply our technique to the ideal 1D linear atomic chain (Fig. 1) where one optical phonon mode 
(ħω = 60 meV) is coupled with electrons de- scribed by a two-band k·p Hamiltonian (inset of Fig. 1). Figure 
2 shows current-voltage characteristics in the ballistic regime, SCBA and with our LOA- Padé technique when 
electron-phonon coupling M is large. It is clearly shown that 3rd order LOA currents combined with Padé 1/2 
successfully reproduce the SCBA values. Figure 3 shows that electron density along the device can also be 
reconstructed with the LOA-Padé approach even though it needs up to 5th order LOA (i.e. Padé 2/3). 
Moreover, the series of LOA physical quantities can be derived from the SCBA algorithm [7]. The approach 
can then be applied to the n-type 3D nanowire transistor (Fig. 4 (a)) where a full- band atomistic treatment 
for electrons (Fig. 4 (b)) and phonons (Fig. 4 (c)) is considered [8]. Figure 5  compares  Id-Vg  curves  of  
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ballistic regime and SCBA with those obtained by Padé 1/2. We note that 3rd order LOA currents are enough 
to achieve high agreement with respect to SCBA (Fig. 6). 

In conclusion, the results show the relevancy of our technique for efficient quantum transport modelling with 
high accuracy compared to SCBA. 
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