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While trying to exploit graphene in Radio Frequency applications, the reduction of the contact resistance (Rc) 
is probably one of the most challenging technological issues to be solved. Graphene patterning under the 
metal has been demonstrated to be a promising solution, leading to a reduction of Rc by up to a factor of 20 
[1], probably due to an increased conductivity at the borders of the patterns of graphene [2]–[5]. This 
technology is still at the early stage and a complete understanding of the physical mechanisms at play is 
lacking. To this purpose we propose a multi- scale approach based on first-principle calculations, and the 
solution of the continuity equation to compute Rc in the considered patterned contacts. 

The continuity equation in the graphene flake reads: 

    ∇ · J2D (𝑦𝑦, 𝑧𝑧) = |Jinj(𝑦𝑦, 𝑧𝑧)|                (1) 

where J2D is a in-plane current density (in  A/m), and Jinj is the metal-to-graphene vertically injected current, 
(in A/m2). In particular, J2D = µ𝜌𝜌𝛻𝛻𝜑𝜑 +  𝐷𝐷𝛻𝛻𝜌𝜌, where µ,𝜌𝜌,𝐷𝐷, are the mobility, density, and diffusivity of 
carriers (either 𝑛𝑛 or 𝑝𝑝 depending on the metal exploited for the contact [6]) and φ is the electrostatic 
potential. Assuming quasi-equilibrium conditions and neglecting the diffusive term, J2D reduces to J2D  ≅  
𝑞𝑞µ𝑝𝑝𝛻𝛻𝜑𝜑. To model the vertical injected current from the overlapping metal, we assume an ohmic relationship 
i.e., Jinj = Gφ where G is a conductance per unit sur- face (in S/m2) estimated from atomistic simulations. As 
a consequence Eq. (1) eventually reads: 

    𝛻𝛻𝑞𝑞µ𝑛𝑛𝑛𝑛𝛻𝛻𝜑𝜑(𝑦𝑦, 𝑧𝑧)  =  𝐺𝐺𝜑𝜑(𝑦𝑦, 𝑧𝑧)                               (2) 

Regarding the geometrical structure, we assume that the metal fills the graphene etched regions as in Fig. 
1a. The metal-filled regions behave as equi-potential surfaces and can be modeled as Dirichlet conditions 
for the solution of the differential equation. For what concerns the graphene under the metal, we have 
considered two different sets of parameters (ρ, µ, G) depending if it is close to the edges of the pattern or far 
away. An estimation can be obtained from Density Functional Theory (DFT) calculations. Once φ is ob- 
tained, we can determine the component along the transport direction (y-direction) of the current density 
J2D,y = qµnn ∂φ  and Rc calculated (in Ω) as: 

            𝑅𝑅𝑐𝑐 =  𝑉𝑉𝑚𝑚−𝑔𝑔 /⎰𝑑𝑑𝑧𝑧 𝐽𝐽2𝑑𝑑,𝑦𝑦 (𝑦𝑦, 𝑧𝑧)|y=ymax      (3) 

 

where 𝑉𝑉𝑚𝑚−𝑔𝑔  is the metal-graphene bias and the in- tegral accounts for the total current flowing at the 
contact end, i.e., y=ymax. 

In this work, inspired by recent experimental results [12], we have considered gold-graphene contacts with 
graphene patterned with square holes . Two hole sizes (with hole side lh = 100 nm and lh = 200 nm) and two 
different number of holes (nh = 400 and nh = 160) have been considered. The graphene region dimension 
has been set to 12 µm × 5 µm. We have performed DFT calculations using the Quantum Espresso package 
[7], with a gradient-corrected ex- change correlation functional (Perdew-Burke- Ernzer- hof (PBE)) [8], and a 
ultrasoft pseudopotentials (US- PPs) [9] in scalar relativistic form. The simulated Au-graphene structure is 
depicted in Figure 1a. It consists of four continuous layers of Au and an interrupted layer of graphene. Dipole 
correction and the dispersion effects (Van der Waals corrections [10]) have been included in the 
simulations. The curve corresponding to the Dirac point energy on graphene in the interacting system has 
been extracted computing the difference of the local Fermi energies with respect to the vacuum levels and 
the local work function. The calculated ΔEf = Ed − Ef (where Ef  is the Fermi level and Ed is the Dirac point) is: 
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0.32 eV and 0.25 eV, at the edges and the surface graphene respectively (Fig. 1b), resulting in electron 
concentrations of 7.68 × 1012 cm−2 and 4.75 × 1012 cm−2. The electron mobility has been taken equal to 3.5 
× 103 cm2/Vs as in [5]. The geometry of graphene and gold has been optimized keeping the upper two gold 
layers fixed and relaxing the position of the atoms. Au-graphene equilibrium distances are 3.1 A˚ at the 
center and 1.9 

 
Fig. 1. (a) DFT Au-graphene structure and (b) Fermi energy shift with respect to the Dirac point (ΔEf) 
obtained from the electrostatic potential analysis on carbon atoms. 

A˚at the edges. A tight-binding model of graphene has then been used to obtain the transmission 
coefficient. An electronic gap simulating the gold-graphene interlayer has been introduced by modifying the 
on- site energies of the graphene Hamiltonian. Using 𝑇𝑇 and ΔEf  we have determined the conductance from 

Landauer’s formalism: 𝐺𝐺 =  𝑞𝑞2
2ħ

 ⎰𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑇𝑇T at the edges and the surface respectively. Eq. (2) has then been 
solved using NanoTCAD ViDES open-source code [11]. We imposed zero potential (as a reference) at the 
𝑦𝑦 =  5 µm end and set Vm-g = 0.1 V (note that Rc is not dependent on this value). The solution of Eq. (2) for 
the four different considered configurations is depicted in Fig. 2a. In Fig. 2b we show Rc as a function of the 
total edge perimeter. As can be seen, as the patterning is increased Rc is reduced in accordance with 
experimental results. The contact resistance is nonetheless dependent also on the remaining graphene 
surface, and a large increase of the etched regions spoils the contact [5]. 
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Fig. 2. (a) Potential distribution in the graphene flakes for hole sizes lh = 200 nm (top) and lh = 100 nm 
(bottom) and two number of holes: nh = 480 (left), nh = 160 (right). (b) Contact resistance as a function of 
the total edge perimeter. 

A multi-scale approach based on DFT calculations and transport simulations has been proposed to calculate 
the resistance of metal/patterned graphene contacts. The model has been applied to several pattern 
configurations and manages to take into account the effects of the edges in reducing Rc. Such a model can 
be exploited to provide an optimization of the contact resistance and to guide and orient the experimental 
activity. 
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