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ABSTRACT 
The transport coefficients p , p E , D  and D, are ex- 

tracted from the spherical harmonic expansion (SHE) of 
the electron distribution function. The truncation effect 
of the higher-order term in the SHE on these transport 
coefficients is studied. The Einstein relation is also exam- 
ined for hot-carrier transport. Comparison with Monte 
Carlo (MC) data shows that the modeling of p , p E , D / p  
and D E / p E  in terms of local variables Nd and W alone 
may not be sufficient. 

1. Introduction 
Historically, there are two different approaches to  

the derivation of hydrodynamic (HD) transport models. 
Stratton’s approach [l] is based on the relaxation time 
approximation (RTA) for Boltzmann’s collision integral 
while BlGtekjaer’s [2] is based on the moments of the 
Boltzmann Transport Equation (BTE). The BTE can be 
rigorously expanded into spherical harmonics (SH) [ 3 ] .  
However, Stratton derived the constitutive equations for 
the current density and the energy flux density by using 
only the first two terms of SH [l]. In today’s submicron 
devices,carrier and energy transports are carried out un- 
der conditions far from thermal equilibrium and the ne- 
glect of the higher-order terms in the SHE may introduce 
substantial errors. 

In this paper, the definition of transport coefficients 
appearing in the energy transport model is re-examined 
and an empirical expression is obtained by using the SHE 
of electron distribution function extracted from the bulk 
MC data. 

2. Derivation of Transport Coefficients 
SHE of the BTE 

For simplicity, we only consider the l-D problem here. 
The SHE is then reduced to  Legendre polynomial expan- 
sion (LPE). We expand the distribution function as fol- 
lows: 
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where 8 is the angle between and the x-axis and 
P,(cosB) are the Legendre polynomials. From Liang et 
al. [3], the first-order component of the BTE leads to 
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where $ E )  is the dispersion relation, W ( E )  = 
d m / m * y ’ ( ~ ) ,  Y ’ ( E )  = dy(s) /d&,  E, is the electric 
field in the x-direction, and TI is the collision relaxation 
time associated with PI (cos8). Thus f l (x ,  E )  is related to 
spatial and energy derivatives of f o ( x , ~ )  and f 2 ( x , ~ ) .  

If (2) is multiplied by a(@ = fig and integrated over 
the entire energy range, we obtain the conservation equa- 
tion for the momentum. This is the approach taken by 
Bl~tekjaer [2] and by Tang et al. [4]. However, if both 
sides of (2)  are multiplied by T1qw and then integrated 
over the energy, we obtain the constitutive equation for 
the current density j .  This is basically the approach taken 
by Stratton [l] and by many others [5]. In this paper, we 
follow Stratton’s approach. 
Transport Coefficients as Functions of the SHE 
Coefficients 

Using the notation of [5] except for the energy, the 
current density j and the energy flux density s are defined 
as 

( 3 )  

Ew-g(&)dE, 2 (4) 

0-7803-4369-7/98 $10.00 0 1 9 9 8  IEEE 
23 8 



is the density of states. Substituting (2) into (3) and (4), 
the following two constitutive equations are obtained: 

( 5 )  

(6) 

d’ 
j =  qPEzn + c $ j p n ) ,  

d‘ 
d x  

s =  -pEEZnW - -(DEnW), 

00 
where 

W = ;l Ef0dE)dE 

is the average energy and the prime on the derivative 
denotes that the derivative does not apply to the impurity 
concentration. The transport coefficients p,  pE,  D and DE 
are defined as: 

. .  

and 

fo >> f2  is not satisfied, particularly in the region where 
the average energy W is increasing. Figs. 2 and 3 show 
the result of the LPE of electron distribution function at  
two locations, one at increasing energy (z > 0) and the 
other at  decreasing energy (z < 0), but both having 
about the same W. It is seen that on the increasing en- 
ergy (heating) side, the condition fo >> f1 >> f2  . . . , etc. 
is hardly satisfied. This indicates that the distribution 
function is highly anisotropic and that the assumption 
of equi-partition of energy is invalid. On the decreas- 
ing energy (cooling) side, the magnitude of fi, fi, . . . , etc. 
diminish rapidly; however, the shape of fo is far from 
Maxwellian. This reflects the fact that the high-energy 
tail of electron distribution is relaxing very slowly towards 
the Maxwellian form. 
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According to (7) and (S), these transport coefficients are 
precisely defined through energy integrals involving fo, f2 
and TI (Ni,  E ) .  

Fig. 2 The LPE of electron distribution function at x = 
0.248pm, where $$ > 0 and W = O.209eV. 
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Fig. 1 Effect of neglecting fi on D and D E .  
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Fig. 3 The LPE of electron distribution function at x = 
0.412pm, where < 0 and W = 0.222eV. 

Using the inhomogeneous MC data of n+ - n - n+ 
structures [4], we have compared p , p E ,  D and DE with 3. Examination of the Einstein Relation 
and without the term involving f2. We have found that We have also examined the Einstein relations D / p  
although the difference between the two for p and pE is and DE/pE which are shown in Fig. 4. While D, /pE 
small because the energy derivatives of fo, f2  are involved is approximately equal to 2W/3q(x k g T , / q ) ,  D / p  is not. 
in the definition of p and p c ,  it is not negligible for D This is related to the non-equipartition of energy, signified 
and DE as shown in Fig. 1. This is because the condition by the presence of fi. The ratios D E / D  and p E / p  are 
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Fig. 4 Plots of D / p  and DE/pE vs. distance compared to 
w 4 1 3 q .  

often given in the literature as 

This simple ratio is based on two assumptions: (i) fi is 
negligible compared to f ~ ,  and (ii) f~ is proportional t o  
e k ~ T e .  As can be seen from Fig. 5 in which these ratios 
are compared to the MC data, these two ratios are quite 
different under the non-equilibrium condition. 
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Fig. 5 Comparison of D,/D,  p c / p  and [ ( W )  vs. distance. 

4. Non-local Effect of Carrier Transport 
From the device simulation point of view, the task 

now is to model the transport coefficients p , p E , Q  and 
D, in terms of the state variables such as n,V and 
W .  It is always desirable if these transport coefficients 
can be expressed as a single-valued function of W only. 
The local energy-dependent model which is based on the 
homogeneous MC data, accurate over the energy range 
0.04eV 5 W 5 0.5eV7 can be expressed empirically as: 

D* 1 2  
- = - [ -W+f(W)puI,  
P* 9 3  

where Nd is the total doping concentration in ~ m - ~ ,  WO = 
gkBT0 is the equilibrium lattice energy in eV, p* and pL,* 
are in cm2/mV . s, and p, pE and pu are functions of W 
given by 

i=.? 

P = Pi(W - WOK 
i=O 

i=3 

i=O 

i=3 

Pu = &i(W - WO)i 
i=O 

The coefficients pi, pEi and pui are listed in Table I. The 
function 

1 - exp[-4( - I)] if w > WO m={ 0 otherwise 

is inserted in (12) to assure that D*/p* reduces to its 
equilibrium value of 2w0/3q as W approaches WO. 

Table I: List of coefficients for the Einstein relation (DIP) ,  
the mobility ( p * ) ,  and the energy mobility (pz) .  

Units 

However, even these local MC-calibrated energy- 
dependent models do not predict the device performance 
accurately when they are applied to the actual inhomoge- 
neous device simulation. The reason is that the non-local 
effect depends on the shape of the distribution function 
and the average energy alone can not fully characterize it. 
As an example of such non-local effects, Fig. 6 compares 
the difference between (%) loca l  using (12) and ( $ ) ~ c  
from the MC simulation. 

Using the local model given by (10)-(13), the average 
electron velocity V and the energy flux density s are cal- 
culated from the HD equations and are compared to the 
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Fig. 6 Comparison of D / p  predicted by the local energy- 
dependent model with that of actual MC simulation data. 
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Fig. 7 Comparison of V predicted by the local model, the 
hybrid model and the non-local model with that of MC data. 

MC results in Figs. 7 and 8, respectively. Also shown 
in these figures are results obtained by using the method 
of the moments of the BTE with expressions for j and s 
different from (5) and (6). In those expressions, p* ,  p:, U 
and R are modeled as functions of W as well as VW and 
a nonlinear term involving velocity and momentum is also 
included [4]. This model is labeled as the non-local model. 
Although this model reproduces the MC result quite well, 
often a steep price needs to be paid for numerical conver- 
gence. It is also possible to use the expression (6) with 
the transport model (11) and (13) for s and the non-local 
transport model for j from [4]. The result is labeled as 
the hybrid model in the figures. 

5 .  Conclusion 
Using the SHE of the distribution function and cast- 

ing the current density and the energy flux density in 
the form of (5) and (6) respectively, the transport coeffi- 
cients p, p E ,  D and DE can be rigorously defined through 
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Fig. 8 Comparison of s predicted by the local model, the hy- 
brid model and the non-local model with that of MC data. 

the expansion coefficients fo,  f2  and their energy deriva- 
tives. We have found that D / p  deviates substantially 
from 2W/3q for the non-equilibrium transport. Moreover, 
most of these transport coefficients exhibit a strong non- 
local effect typically signified by the presence of the non- 
negligible component f2.  As a result, the local energy- 
dependent model of these transport coefficients often in- 
troduces substantial errors when it is applied to inho- 
mogeneous device simulations. The same problem exists 
if an alternative approach of the moments of the BTE 
is used [4]. However, from the numerical implementation 
point of view the moment approach has a slight advantage 
over Stratton's formulation, because the mobility coeffi- 
cients always appear outside of the gradient operator and 
the non-local correction is easier to implement. How to  
improve the non-local correction in the modeling without 
resorting to complicated transport equations and thus as- 
suring numerical stability is still a challenge for the HD 
device simulation. 
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