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Abstract 
The cumulant expansion method is proposed to solve 

the Boltmann transport equation (BTE) in 
semiconductors. This method involves deriving a set of 
partial diflerential equations for the expansion coefficients 
from a Fourier transformation of the BTE. The collision 
terms for phonon emission and absorption scattering are 
obtained directly from quantum computed scattering 
transition rates, without invoking the relaxation time 
approximation. Unlike the moment expansion method used 
in hydrodynamic models, the cumulant expansion 
converges much faster when the distribution function is 
close to a drifred maxwellian because, for this case, only 
the first three cumulants are non-zero. This method also 
provides a way to construct an arbitrary distribution 
function from the computed cumulants, without being 
limited to a shifed maxwellian. 

I. Introduction 
Hydrodynamic models have the best mixture of 

physical sophistication for modeling of non-local effects in 
submicron devices and affordable computation efficiency 
in the TCAD environment. Major progress has been made 
in the last thirty years since hydrodynamic models were 
first proposed by Blotekjaer [ l ]  and Stratton [2]. 
Hydrodynamic models have been used successfully in 
modeling carrier heating and velocity overshoot effects. 
However difficulties still exist, especially in modeling the 
collision terms. Most hydrodynamic models even use 
energy independent relaxation times. The relaxation time 
approximation (RTA) requires a long list of pre-conditions, 
including that the distribution function can only be a 
perturbation to a local equilibrium distribution and that 
scattering has to be either isotropic or elastic. These 
conditions clearly break down in deep submicron devices 
where the electric field can vary rapidly and thus the 
resulting distribution function is far from equilibrium. 
Furthermore, the relaxation times are usually extracted 
from bulk Monte Carlo simulation and applied in 
hydrodynamic models as a function of energy. This method 
is in gross error, because a distribution function in a 

homogenous field can be very different ?+om one in a 
device, despite sharing the same average energy after 
integration. As first pointed out by Lee and Tang[3] and 
more recently by Anile et al. [4], the collision terms are 
more correctly a function of current density and energy 
flux. Their empirical formulas are based on the first three 
terms of a moment expansion of the collision term 
proposed by Hansch et al. [5]. However, his approach, 
though more accurate, suffers slow convergence. 
Hydrodynamic models also limit themselves to only 
shifted-maxwellian distributions, in spite of the fact that 
this implicitly assumes the heat flux is zero, which is 
generally not the case in a device. In this paper, we propose 
a complete hydrodynamic model based on the cumulant 
expansion method to address the above problems. 

The cumulant expansion[6-71 has been used in many 
fields of statistics. It is especially efficient in treating 
random process whose distribution function is close to a 
shifted gaussian. In this paper, we will show first that only 
three cumulants are needed to represent a shifted gaussian 
instead of the infinite number of terms required by the 
moment expansion method upon which hydrodynamic 
models are based. Even when the distribution functions are 
distorted from a shifted gaussian in high fields, the higher 
order cumulants should be small and converge fast. 

Section I1 applies Fourier transformation to the BTE. 
A set of partial differential equations is obtained by 
comparing the coefficients of the conjugate variable of the 
random momentum. Next, the collision terms from phonon 
emission and absorption are examined, without employing 
the RTA, in section 111. The last section summarizes our 
results. Possible future work is also discussed. 

11. Cumulant Expansion of the Boltzmann 
Transport Equation 

One popular approach to solve the BTE is by 
expanding the distribution function into a series of known 
base functions. The coefficients of the expansion satisfy a 
set of hierarchical PDEs. The faster the series converges 
the less error is produced due to truncation. The benefit of 
the cumulant expansion is obvious because only the first 
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three terms in the expansion are needed to represent a 
shifted maxwellian. Moreover, as long as the distribution is 
close to a shifted maxwellian, the higher order cumulants 
will be small and reduce to zero very quickly. In contrast, 
the moments of a shifted maxwellian distribution function 
never go to zero until the number of moments tends to 
infinity. 

Cumulants are defined as the coefficients of a Taylor 
expansion of the logarithm of the characteristic function. A 
characteristic function g is defined as the Fourier transform 
of its distribution function f(x,p,t): 
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The index i runs through x, y ,  z in three dimensions. 
The nth cumulants Ci',=. usually deperids on position and 

time and is a tensor with n symmetric indexes. Let's use the 
shifted maxwellian as an example to show the effectiveness 
of the expansion. Assuming the system has a temperature 
of T, effective mass of m* and average momentum of po, 
the characteristic function is then: 
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It is easy to see that the first three cumulants are ln(n), 
average momentum po and m*k*T, where T is the scalar 
temperature. All other cumulants are zero. If the 
distribution function is expanded in moments, on the other 
hand, the series will need an infinite number of terms. 
Figure 1 compares the decay of the cumulants and the 
increase of moments as the order increases for a shifted 
gaussian distribution function with both shift and spreading 
of unity. The moments increase geometrically with the 
increase of the order, while the cumulants are all zero for 
the orders larger than 2. 

The relationship between moments and cumulants can 
be obtained by taking the Taylor expansion of the 
characteristic function into moments and comparing the 
coefficients 1,4,i!jgj ,.... : 
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Figure 1. The comparison of cumulants and moments from a 
shifted gaussian distribution. The moments clearly diverge 
as the order increases while cumulants drop to zero for those 
with order larger than 2. 

m .R m .n 

Note that we have adapted Einstein's notation: 
repeated indices mean summation. It is useful to relate the 
first few cumulants with the moments of a distribution: 

High order cumulants decrease fast because they 
contain only the higher order correlation of random 
variables left after subtracting the best possible correlation 
constructed with lower order cumulants. 

In general, cumulants depend on the position and time, 
just as the distribution function they represent. Similar to 
hydrodynamic equations, the cumulants satisfy a set of 
'partial differential equations imposed by the BTE. By 

multiplying the BTE by exp(iE. j) and integrating over p, 
a set of PDEs can be obtained by comparing the 
coefficients of l ,&,&Ej,  .... after factoring out a 

characteristic function from each term: 
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whcrc thc f s on thc right hand sidc arc collision dissipation 
tcrms rclatcd to thc cumulants. Notc that thc clcctric field 
vcctur Pi only appcars in thc PDE for thc sccond ordcr 
cumulant. Aftcr thc cumulants arc solved from the PDEs, 
an arbitrary distribution function can be constructed via a 
rcvcrsc Fouricr transform. If thc 3d or higher order 
cumulants arc includcd, the resultant distribution function 
will be morc gcncral than a shiftcd maxwcllian. The first 
equation is thc particlc conscrvation equation. The second 
and third, howcvcr, arc mixtures of particle conservation, 
momcntum conservation and energy conservation 
equations. 

111. Modeling the Collision Terms Without 
Relaxation Time Approximation 

Traditionally, collision terms are modeled by the RTA. 
As pointed out in [8], the distribution function is very 
different at the rising and falling edge of a changing field, 
even if the average energies are exactly the same. As a 
result, the collision term, which depends on the distribution 
function, is also very different. This indicates that the 
average energy is not sufficient to represent the distribution 
function or the collision terms. Thus, the traditional 
approach of extracting relaxation times from bulk Monte 
Carlo simulation is inaccurate: the distribution function in 
the bulk (constant fields) has little correlation with the 
distribution function in areas of a device where the fields 
change rapidly. In response to this limitation, Lee and Tang 
[3] proposed to characterize the collision terms by current 
density J and energy flux S instead of energy alone. They 
rely on Monte Carlo simulation of rising and falling fields 
(similar to the fields found in a MOSFET) to extract the 
dependence of the collision terms. Recently Anile et a]. [4] 
also proposed a similar version of the collision term. 
However both models are empirical and the linear 
dependence on J and S is not well justified. 

Here we apply our method to the collision terms using 
frst principles. Similar to Section 11, we apply a Fourier 
transform to the collision term and factor out a 
characteristic function: 

where are collision terms for n-th cumulant, S(p,p') 

is the transition rate from p to p' due to scattering. The first 
three are expressed as: 

... n 

where S(p,p') is the transition rate due to scattering. The 
expressions for various scattering mechanisms can be 
derived from Fermi's golden rule based on quantum 
perturbation theory. Since the collision terms in the BTE 
linearly depend on the transition rate due to each scattering, 
the total collision contribution for each cumulant is the sum 
of the contributions from each scattering mechanism: 

The resultant collision terms therefore are explicit 
functions of the cumulants and other physical constants 
related to the scattering mechanisms. Thus, with this 
method no relaxation time approximation is needed. 

Let's use optical phonon scattering as an example for 
the scattering dissipation calculation. The optical phonon 
transition rate S(p,p') is obtained by quantum perturbation: 

where DtK is the optical phonon coupling constant, N, is 
the phonon occupation number, Oop is the angular 
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trcqiicncy of tlic 0l)ticiil phonon. 'l'lic plus and niinus signs 
corrcxpontl to tlic iil)sorption ;ind emission of' thc phonon. 
'1'11~ collision lcrrll lor the lirsl cuftluliint Ciin bc obtitincd 
by idugyiny llic sciiltcring rille into thc cxprcssion of thc 
collision dissipiition: 

Thc squarc root of final cncrgy comcs from thc dcnsity 
of statcs in thc abovc cquation. Rccall that thc first ordcr 
cumulant rcprcscnts thc avcragc momcntum, and thc 
dissipation ratc of avcragc momcntum is proportional to thc 
initial momcntum avcragcd ovcr thc dcnsity of states. Of 
coursc, thc dissipation ratc is also proportional to the 
phonon population for phonon absorption and proportional 
to phonon population plus 1 for phonon emission. The 
scattcring dissipation ratc for the second ordcr cumulants 
can also bc computed similarly: 

where I i j  is given by 

The averages in the scattering dissipation terms can be 
expressed in cumulants that represent the distribution 
function. As a matter of fact, the average of any function 
S(p) can be expressed in cumulants through the following 
equation: 

In this way the relaxation time approximation is 
removed completely. The expression of the collision 
dissipation terms are thus the functions of cumulants and 
the physical constants such as effective masses, Plank's 
constant, optical phonon energy and coupling constants. 

We have constructed the framework for a simulation 
model for using cumulant expansion technique. This 
technique can treat collision terms without RTA. Thus no 

cnipirical parameters arc introduced and no calibration to 
Montc Carlo simulators are necessary. Without any 
assumption on the shape of the distribution function, this 
mcthod cxtcnds the hydrodynamic model into an efficient 
BTE solver, and offers all capabilities which are available 
only from more complex methods such as spherical 
harmonic expansions. At the same time it is much simpler 
to solvc than that of the spherical harmonic expansion. 

So far we have only addressed the phonon scattering 
mcchanisms. Several more scattering mechanisms, such as 
impurity scattering, surface roughness and carrier-carrier 
scattcring will be published elsewhere together with the 
truncation scheme of the PDEs. More work is needed in 
verification of the model against Monte Carlo simulation in 
bulk, Id and 2d simulations. 

IV. Summary 
We have proposed a new way of expanding the carrier 

distribution function in semiconductors. Without any 
assumption on the shape of the distribution function, a set 
of partial differential equations for cumulants is obtained 
by a Fourier transformation of the BTE. The collision 
terms are obtained without using the relaxation time 
approximation, thus lifting a major assumption which 
severely limits the accuracy of hydrodynamic methods in 
modeling submicron devices. In addition, only the three 
lowest cumulants are needed to represent a shifted 
maxwellian, which offers convergence advantages over 
moment-based methods such the traditional hydrodynamic 
model. Similar to the spherical harmonic expansion the 
cumulant expansion does not introduce empirical transport 
parameters and therefore no calibration is needed. More 
work is needed to make the cumulant expansion a viable 
model for device simulation for modem device 
technologies. 
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