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1. Introduction 
Submicron semiconductor devices that incorporate hot 
electron effects or quantum tunneling are playing an in- 
creasingly important role in advanced microelectronic ap- 
plications. For the simulation of such devices, fluiddy- 
namical equations are used as a reasonable compromise 
between computational efficiency and an accurate des- 
cription of the underlying device physics. In this paper, 
we are concerned with two modern semiconductor mo- 
dels: the energy-transport and the quantum hydrodyna- 
mic equations. 

The energy-transport models consist of the conserva- 
tion laws for mass and energy for the electrons, coupled 
self-consistently to the Poisson equation. They are deri- 
ved from the semiconductor Boltzmann equation. More 
precisely, from the Boltzmann equation, the so-called 
spherical harmonic expansion (SHE) model is obtained in 
the diffusion limit and then, through a diffusion limit, re- 
spectively making electron-electron or phonon scattering 
large, the energy-transport equations are derived from 
the SHE model [l]. We present numerical simulations 
of energy-transport models, incorporating non-parabolic 
band diagrams. The structure of the current equations al- 
lows to rewrite the stationary problem in a drift-diffusion 
formulation, which is discretized by using the exponential 
fitting mixed finite-element method. Numerical simulati- 
ons of a one-dimensional ballistic silicon diode are perfor- 
med, and the influence of the non-parabolicity parameter 
on the spuriuos velocity overshoot peak is shown. 

The quantum hydrodynamic equations consist of the 
conservation laws for mass, momentum and energy, inclu- 
ding the Poisson equation. The momentum and energy 
equations contain quantum correction terms, which ac- 
count for the quantum effects. They are equivalent to a 
mixed-state Schrodinger-Poisson system, under the con- 
ditions of vanishing relaxation terms and assuming an 
appropriate closure condition in the energy equation [6]. 
The one-dimensional stationary equations are discretized 
by means of finite differences, and numerical simulations 
of a resonant tunneling diode are performed. The nume- 
rical results show negative differential resistance effects. 

2. Energy-transport Models 
The stationary energy-transport equations in one space 
dimension read as follows [l]: 

EsVzx = q(n - C ) .  (5) 

The variables are the chemical potential p ,  the electron 
temperature T ,  and the electric potential V. Further- 
more, J1, J z  are the particle and energy current densities, 
respectively. The physical constants are the elementary 
charge q ,  the Boltzmann constant kg, and the semicon- 
ductor permittivity E $ .  The electron density n depends 
on p and T. The space dependent function C = C ( x )  
is the doping profile, L,, = LLJ(n ,  T) are the diffusion 
coefficients, and W = h V ( n , T )  is the energy relaxation 
term. These equations hold in the (bounded) semicon- 
ductor domain R = (0, e ) ,  and they are complemented by 
the boundary conditions 

n(0) = C(O), n(t) = C ( t ) ,  T(0)  T ( l )  = To, 
V ( 0 )  = 0, V(l) = u, 

where TO is the lattice temperature and U the applied 
potential. 

An important observation is that the current densities 
can be written in the drift-diffusion form 

Vz 
J z  = .YZ(~, T)z - gt(72, T I T ,  2 = 1 ,2 ,  (6) 

with g1 = ,511 and g 2  = Lzl. This formulation is valid for 
any current densities coming from a SHE model (see [3]). 

In order to give analytical expressions for the diffusion 
coefficients and the energy relaxation term, in the varia- 
bles n and T ,  we have to impose some physical assumpti- 
ons: (i) The energy band E of the semiconductor crystal 
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is spherical syymetric and a mono tpe  function of the 
modulus k = Ikl of the wave vector k; (ii) a momentum 
relaxation time .(E) can be defined by T-’ = $ ~ @ N ( E ) ,  
where $0 > 0, ,B > -1, and N ( E )  = 4nk2//le’(k)l is the 
density of states of energy E = ~ ( k ) ;  (iii) the electron 
density is given by Boltzmann statistics; (iv) the energy 
band diagram is defined by Kane’s relation: E( 1 + a&) = 
ti2k2/2m, where a > 0 is the non-parabolicity parame- 
ter, ti the reduced Planck constant, and m the effective 
electron mass; (v) a k ~ T  << 1. 

The condition (ii) is used, for parabolic bands, in 
Lyumkis et al. [7] with ,B = 1/2 and in Chen e t  al. [2] 
with ,B = 0. The corresponding energy-transport models 
are referred to as the Lyumkis model and the Chen model, 
respectively. The assumption (iii) is valid for semiconduc- 
tor devices with doping concentrations below 10’’ ~ m - ~ .  
The fifth hypothesis is valid for silicon devices, in which 
a = 0.5 (eV)-’ and T is of the order lo3 K. 

Under the assumptions (i)-(v) and up to second order 
terms in a k B T ,  the functions g1 and g 2  are given by [3] 

&(n, T )  = qn/A;’P(kBT)i, i = 1,2,  (7) 

where the mobility pgjp is defined by 
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and po is the (low-field) mobility constant. The energy 
relaxation term can be computed as 

I 

where r is the I?-function. Notice that in the parabolic 
band case a = 0, we obtain the same current densities 
and energy relaxation terms as in [7] (with ,B = 1/2) and 
in [2] (with ,B = 0). 

The continuity equations are discretized by using the 
mixed finite element method. This method can be sket- 
ched as follows: (i) First, we transform the problem by 
means of the Slotboom variable to a symmetric form. 
Since in the present case a Slotboom variable does not 
exist, we approximate T in the current relation (6) by a 
piecewise constant function and transform the approxi- 
mate equation by local Slotboom variables such that this 
equation can be written in symmetric form. (ii) Then, 
the corresponding continuity equations can be discreti- 
zed with mixed finite elements. (iii) Finally, by a suita- 
ble discrete change of variable the discrete equations are 
rewritten in terms of the original variables 91, g 2 ,  respec- 
tively. The final result can be interpreted as a non-linear 
Scharfetter-Gummel discretization (see [3] for details). 

In order to solve the resulting coupled system of al- 
gebraic equations, we employ a variant of the Gummel 
method. The Poisson equation is solved by means of a 
PI non-conforming finite element method. The tempera- 
ture T is computed in terms of yl and g 2  by inverting 
appropriately the relations (7). The Gummel-type itera- 
tion scheme is coupled to a continuation in the applied 
bias. 

As a numerical example we present the simulation of 
an n+nn+ ballistic silicon diode. In the n+-regions the 
maximal doping concentration is 5 . 1017 cmP3; in the n- 
channel the minimal doping profile equals 2 . 1015 ~ m - ~ .  
The length of the n+-regions is 0.1 pm, whereas the length 
of the channel region equals 0.4pm. The mobility con- 
stant is taken to be po = 1500cm2/Vs and the energy 
relaxation time equals 70 = 0.4 1 s. The applied po- 
tential is U = 1.5V. We have chosen the data such that 
our results can be compared to the numerical results of 
the literature (see, e g . ,  [2]). 

We perform numerical results for a uniform mesh of 
500 nodes. In Figure 1 the electron mean velocity u = 
Jl/(qn) for two different values of the non-parabolicity 
parameter a using Lyumkis’ model is shown. The spu- 
rious velocity overshoot peak at  the left junction beco- 
mes smaller for non-vanishing non-parabolicity parame- 
ter. The same effect can be observed using Chen’s model 
(see Figure 2), where the spuriuos velocity overshoot spike 
almost vanishes for a = 0.5 (eV)-l. In Figure 3 we pre- 
sent the current-voltage characteristics for the different 
models in double-logarithmic scale. The particle current 
density J1 is always smaller in non-parabolic band situa- 
tions. Its dependence on the applied voltage U is appro- 
ximately sublinear, i.e. 51 N UY,  where y is between 0.83 
and 0.88 depending on the model [3]. 

Figure 1: Electron meun velocity versus position in a bul- 
listic diode using Lyumkis’ model. 

3. Quantum Hydrodynamic Models 
The one-dimensional stationary quantum hydrodynamic 
equations are written as follows: 

J, = 0, (8) 

23 1 



I O 6  
I 

I 
1 2 3 4 5 6 

x io-’ Position in m 

Figure 2: Elec tron  m e a n  velocity versus  posi t ion in a bal- 
l ist ic diode us ing  Chen’s model.  
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Figure 3: Current-voltage characterist ics 
diode. 

(y: + qnkBT) - q2n(Vxt + V ) ,  

qh2 
-- ( 4 n  4 x z )  = 4m 

m J  - ( -E + JkBT) - mJ(Vext + V ) ,  
q n  5 

h2 J 
4q n 

- - - ( n ( w x x ) z  +&x = 

E,Vxx = 

f o r  a ballistic 

These equations are satisfied in the semiconductor do- 
main R = (0, t). The variables are the electron density n, 
the particle current density J ,  the electron temperature 
T ,  and the electric potential V .  The energy density is 
defined by E = $nlcgT + $ i n J 2 / q 2 n ,  and Q is the heat 
flux. The functions RJ and RE are the momentum and 
the energy relaxation terms, respectively, and they are 
given by modified Baccarani-Wordeman models: 

m J  T 
Rj(J ,T)  = -- 

r p  To’ 

where rp and rw are relaxation times, TO is the lattice 
temperature, and z > 0 is a parameter. The external po- 
tential Vext models interior quantum barriers. The term 
h2 (n( lnn)xx)x,  coming from the Bohm potential, is a di- 
spersive quantum correction. 

The quantum hydrodynamic equations without re- 
laxation terms can be derived from a mixed-state Schro- 
dinger-Poisson system [6]. More precisely, from the Schro- 
dinger-Poisson system one obtains the equations (8) - (11)  
with RJ = RE = 0 ,  but the heat flux cannot in general be 
expressed in terms of n, J, and T only. In analogy to  clas- 
sical fluiddynamics, a closure condition has to  be added 
in order to obtain a closed set of equations. We choose to 
specify Q by the Fourier law Q = - K ( ~ B T ) ,  and define K 

by the Wiedemann-Franz formula K = Ko(pomkBTo/q)n, 
where KO is a constant. Another choice could be to neglect 
the heat flux or to assume constant electron temperature 
(and hence to neglect the energy equation). The quan- 
tum hydrodynamic model can also be obtained from the 
quantum Boltzmann equation by means of a moment me- 
thod [4]. Recently, a quantum hydrodynamic model with 
“smooth” quantum potential has been derived from the 
Bloch equation [5]. 

The advantage of the quantum hydrodynamic equati- 
ons is that  macroscopic boundary conditions can be easily 
prescribed: 

n(0) = C(O), .(e) = C(t),  n,(O) = 0, n,(l) = 0, 
V(0)  = 0 ,  V(t) = U,  T(0) = To, T(t)  = To. 

The primary application of the quantum hydrody- 
namic models is the simulation of quantum devices that 
depend on particle tunneling through potential barriers, 
like resonant tunneling diodes. For the numerical simula- 
tions, we first write the energy equation (10) as a second 
order equation in T ,  by using (9). Then the modified 
system of equations is discretized by finite differences on 
an equidistant grid. In order to avoid artificial numerical 
viscosity, central finite differences are used to approxi- 
mate the third-order term in (9). The resulting algebraic 
system is solved on a grid of 1000 nodes employing a 
damped Newton scheme, which is coupled to a adaptive 
continuation in the applied bias (see [8] for details). 

The device is defined as follows. The diode has an 
72+nn+ structure with a doping concentration of C,,,,, = 
c1 in the n+-regions and CInit, = co in the n-region. The 
channel length is 250 A, and the material of the symmetric 
diode is GaAs. In the n-region, there are two A1,Gax-lAs 
barriers, which are modeled by the external potential Vext. 
The barrier and well widths and the space layers between 
the barriers and the junctions are equal to 50 A. The bar- 
rier heigth is denoted by VO. For r , ,  rp, PO and z we use 
the same values as in [4]. 

In the first test we use the following values: co = 
10l6 cm-3, c1 = 2 10l8 e r r 3 ,  Vo = 0.05eV, e = 625 A, 
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K O  = 0.1. In Figure 4 the current-voltage characteristics 
for two different lattice temperatures are compared. As 
expected, there is a region of negative differential resi- 
stance (NDR) with a peak-to-valley ratio which is decre- 
asing for increasing temperatures. The electron teinpera- 
ture for various applied voltages is presented in Figure 5 
using a lattice temperature of 300 E;. The temperature in 
the drain region is increasing for higher biases, due to the 
retarding of the electrons at the beginning of the drain 
region, because of the higher doping. 

In the region of NDR, the electron density is expected 
to accumulate in the quantum well. To illustrate this 
effect we have performed a second test with the data: 
co = 1OI6 c1nP3, c1 = 1018 c ~ n - ~ ,  I/o = 0.27eV7 = 833 A, 
K O  = 0.05. In Figure 6 we see an accuinulatioii of electrons 
in the quantum well for 0.6V < U < 0.7V, the region of 
NDR. There is also a distinct decrease of electrons in the 
barriers for these applied voltages. 

I I 

Figure 4: Current-voltage characterist ics for a tunmeling 
diode. 

Figure 5:  Electron temperature 'versus posi t ion an,d app- 
lied voltage. 
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Figure 6: Electron densi ty  versus pos;ition, and applied vol- 
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