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1. Introduction

The exponential trend of scaling down of semi-
conductor devices requires a deep continued effort
for processing devices into the deep submicron range.
The cost for processing such devices is also increasing
rapidly and thus acts as a brake upon developing new
technologies of which performances and limits are
not clearly stated. At this level, the simulation tool
plays a fundamental role for predicting performance
gains as well as peculiar advantages and shortcom-
ings.

To date the most comprehensive techniques for
modeling transport and operation of submicron
semiconductor devices are based on numerical solu-
tions of the Boltzmann equation. Among them, the
Monte Carlo method has emerged to be a power-
ful technique because it is closed to the corpuscular
reality, without approximations in solving the Boltz-
mann equation and takes naturally into account hot-
carrier and transient phenomena. However, due to
its stochastic nature and the finite number of simu-
lated particles, the Monte Carlo method meets with
difficulties in calculating quantities on a hydrody-
namic time scale such as the transient and average
energy, velocity, etc., and also currents measured in
the output circuit, in particular in the subthresh-
old regime. Moreover, device performances in ULSI
technologies are very sensitive to phenomena such
as dopant fluctuations, process oriented noise, quan-
tum fluctuations, etc., which require for their study
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to make an great effort on reducing the noise due to
the computer simulation techniques.

In this communication, we present an efficient
and simple method using a generalized formulation
of the Ramo-Shockley theorem for the calculation of
the time-dependent terminal currents in multi-port
devices within the ensemble Monte Carlo modeling,
including the displacement current and the separate
contribution of each particle type. Moreover, our
technique is optimised for the cloud-in-cell and box-
integration framework. We emphasize that our for-
mulation does not require any additional optimiza-
tion theory, is easy to implement and does not in-
crease CPU time consumption.

2. Generalized Ramo—ShoékIey theorem
The well-known Ramo-Shockley theorem [1,2)]

states the total steady-state conduction current flow-

ing through the contact k of a multiport device as

Iy = Zank(rn) *Vn (1)

where n is the particle number, g its charge, r and
v its position and velocity vectors respectively. Wy
is the electric field vector obtained when all charges
have been removed from the domain and all con-
tacts grounded except for contact k biased at 1 V.
This theorem has been successfully implemented in
1D structures and two-port devices 3], and three-
port devices making use of test-function optimiza-
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tion method [4]. Although this theorem assumecs
a constant applied bias condition in time and ho-
mogencous material, it has been extended to inho-
mogencous media (materials with different dielectric
constants) (5] and time dependent contact bias [6].
Then the generalized Ramo-Shockley theorem takes
the following formnulation

Ii(t) = Z(Inwk(rn(t)) vy (t) (2)

n

This formulation gives the instantancous total con-
duction current at any contact of a multiport device
with any structure shape. Note that this theorem, by
using all the simulated particles, allows to optimize
the reduction of the statistical fluctuations caused
by the particle discretisation, since in general fluctu-
ations are inverse proportionnal to the particle num-
ber. Note also that Wy is an unvariable geometrical
factor which is related to the structure of the device.
For a 1D structure of length L, W, takes the uni-
form value of 1/L, and the Ramo-Shockley theorem
reads
1 .
I(t) = i Z gnn(t) (3)
n
where vy, is the carrier velocity along the device ori-
entation.

3. Accurate current estimator

The total conduction current contains the elec-
tron and hole contributions as

Ic(t) = Ie(t) + Ih(t) (4)

where I, and I, are the electron and hole conduc-

tion currents respectively, which can be calculated
independently using Eq. 2 as

Ic,k(t) = ch,nwk(rc,n(t)) . Ve,n(t) (5)

n

Ih,k (t) = z([h.nwk(rh,n(t)) . vh.,n(t)

n

(6)

with subscript e and h standing for clectrons and
holes, respectively.

When the contact bias are varying in time we
have to add the displacement current Iy to the con-
duction current 1. x to obtain the total current Iy
such as

Ik () = Ieg(t) + Tgx(t) (7)

To reduce statistical crrors, the cloud-in-cell and
box-integration methods [7,8] can be used within
the Monte Carlo scheme. Thus we can also apply
these method to the current calculations to further
improve accuracy. Since the electric field and the
charge are discretized at the grid points of a non-
uniform tensor product grid, the particle velocity in
Eq. (2) has also to be discretized in the same way for
consistency. This means the velocity of the charge
at the grid points has to be calculated instead of the
particle velocity. In this case, we obtain the conduc-
tion current at the grid point ¢

I(t+T) = %Z(Qij(t+T)_Qij(t))wk,ij'bij (8)
ij

where Q5 is the nodal charge, T the duration
timestep and by; is the vector defining the box at
the grid point .

The displacement current can be calculated from
the current density

. _ OE
I =E5y

(9)
and by integrating it over the contact section, for
example, as in Ref. [9].

So we have calculated both conduction and dis-
placement currents with a high accuracy using sepa-
ratc computations. Qur method is applicable to any
kind of structure, at any bias conditions and in par-
ticular in subthreshold regime due to the use of all
simulated particles which allows to ultimately reduce
computational noise. We can notice also that our
method generalizes the original results of [10] (See
Eq. 16 to 18 of [10]) which gives a 1D approxima-
tion of the conduction currents for specific structure
shapes. We can casily show for example that Eq. 16
of [10] is a 1D approximation of our Eq. 7 where
contacts have been placed at z; and x4, according
to the notations of [10].

4. Results and conclusions

We present apllications of our method to the case
of HEMT and MOSFET devices. On figure 1 is re-
ported the structure of the simulated AlGaAs/GaAs
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0.3 pum gate length HEMT. Doping densities are
10'® ¢cm~3 near contacting area and 10'® cm=3 in
the channel. The model includes 3D electrons in the
channel, as well as 2D electrons up to the pinch-
off point, and the real space transfert. Results of
thie instantaneous steady-state drain current are re-
ported on figure 2 with our method and the stan-
dard particle-counting method at the contact. Let’s
notice that the current calculated at the contact
takes discrete values corresponding to the number
of particles counted at each sample time. To obtain
continuous data, it is necessary to cumulate data
over the time. On figure 3 we have reported the
structure of the simulated 0.13 pm gate-length n-
MOSFET. Doping densities are 2x10%?° ¢cm™3 near
contacting area and 106 cm™3 in the channel. Cu-
mulated steady-state drain-current calculated with
our method and by particle counting at the contact
are reported on figure 4. One shall notice that we
obtain excellent accuracy although the high doping
used in the contacting regions (2x10%° cm™3). We
notice also that by using the particle counting at
contact the convergence is difficult to obtain. This
is enhanced by the specific shape for the source and
drain electrodes we have used in our structure mod-
elling.

In conclusion, we have presented an efficient and
simple method to evaluate terminal currents in semi-
conductor devices, based on a generalized formula-
tion of the Ramo-Shockley theorem. Moreover, our
method takes advantage of the cloud-in-cell and box-
integration techniques.
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Figure 1: Structure of the simulated HEMT
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Figure 3: Structure of the simulated MOSFET
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Figure 2: Instantaneous drain current for

Vps=0.8V and Vgs=0.1 V in the steady-state
regime of the HEMT. Plotted data are sampled
each 30fs. The current calculated at the contact
takes discrete values corresponding to the number
of particles counted at each sample time.
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Figure 4: Cumulated drain current in the steady-
state regime for Vps =2V and Vgg=1.5 V in the
steady-state regime of the MOSFET. Data are
cumulated during 0.5ps for particle counting at
contact and for 0.005ps for our method.
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