
Simulation and Design of a Single Charge Detector 

G. Iannaccone*, C. Ungarelli, M. Macucci 

Dipartimento di Ingegneria dell’Informazione 
Universiti degli studi di Pisa, Via Diotisalvi 2, 1-56126 Pisa, Italy 

* Phone: +39 050 568677, Fax: +39 050 568522, 
E-mail: iannaOpimac2.iet.unipi.it 

We have performed a numerical simulation of a system made of a quantum 
dot and a nearby quantum point contact defined, by means of depleting metal 
gates, in a two-dimensional electron gas at a GaAs/AlGaAs heterointerface. 
As recent experiment have shown, such a system can be used as a non-invasive 
detector of single charges being added to or removed from a quantum dot. We 
have computed the occupancy of the dot and the resistance of the quantum 
wire as a function of the voltage applied to the plunger gate, and have derived 
design criteria for achieving optimal sensitivity. 

1. Introduction 
In architectures for computation based on quantum 

dots the information is typically encoded in the occupa- 
tion number of a subset of all the dots [l-31. Therefore, in 
order to read or transmit this information to conventional 
electronic circuitry, single charge detectors are needed. 

Recent experiments have shown that it is possible to 
detect a single electron being added to a quantum dot 
by measuring the resistance of a quantum point contact 
placed next to it [4]. The electrostatic potential defining 
the constriction is modified by the contribution of the 
additional electron, so that the transmission coefficients 
and, consequently, the overall resistance are affected. 

In this paper, we consider a quantum dot and a con- 
striction realized on the following heterostructure: an un- 
doped GaAs substrate, an undoped 20 nm-thick AlGaAs 
spacer layer, a Silicon delta doping layer of 6 x 10l2 crrP2, 
an undoped 10 nm-thick AlGaAs layer, an undoped 5 nm- 
thick GaAs cap layer. The 2D electron gas is formed at 
the AlGaAs/GaAs interface 35 nm below the surface. 

The quantum dot and the constriction are defined by 
means of aluminum gates evaporated on top of the het- 
erostructure. The gate configuration is shown in Fig. 1: 
gates 1, 2, 3 and 4 define the quantum dot, with a geo- 
metrical area of 188 x 104 nm; the constriction between 
gates 4 and 5 is the detector. 

2. Numerical modeling 
We calculate the dot occupancy and the resistance of 

the plunger gate (gate 2) for a few initial wire resistances. 
The bias voltages V, of gates i (i = 1. .  .4) are -0.12 V, 

the quantum wire as a function of the voltage applied to 

while we have considered a few different voltages for 
gate 5 ,  between -0.15 and -0.18 V, corresponding to ini- 
tial resistances of the quantum constriction ranging from 
7.6 kR to practically infinity. The backgate, gate 0, is 
grounded. 

A detailed simulation of the system would be pro- 
hibitively time-consuming: first, it would require the self- 
consistent solution of the Schrodinger and Poisson equa- 
tions on a three-dimensional grid, in order to obtain the 
conduction band edge and the electron density profiles in 
the simulation domain. Then, the resistance of the quan- 
tum point contact could be evaluated by means of the re- 
cursive Green’s function formalism, [5] using the potential 
landscape obtained from the Poisson-Schrodinger solver, 
while the charge contained in the quantum dot could be 
simply obtained by integrating the electron density in the 
dot region. Moreover, in order to assess the functionality 
of the detector, the voltage of the plunger gate should be 
swept towards more negative values, as to progressively 
deplete the quantum dot, and both the electron density 
and the quantum wire resistance should be calculated for 
each plunger gate voltage. 

To make feasible the simulation of the system, we 
have adopted a less rigorous approach, in which self- 
consistency requirements are somewhat relaxed. 
Semiclassical Poisson Equation 

We start by solving the nonlinear Poisson equation 
on a 3D grid (65 x 65 x 65 points) with a semiclassical 
approximation: 

V . ( E V ~ )  = -q(p - n + N z ) ,  (1) 
where q5 is the electrostatic potential, E is the dielectric 
constant, q is the electron charge. The semiclassical hole 
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Figure 1: Gate configuration defining the quantum dot 
and the detector (dimensions are in nm). Gate 2 is the 
plunger gate; the voltage applied to gate 5 modulates the 
resistance of the detector. 

and electron concentrations ( p  and n, respectively) are 
obtained as [6]: 

where NC and NV are the effective density of states in the 
conduction and in the valence band, respectively, E c  and 
Ev are the conduction and valence band edges, respec- 
tively, IC is the Boltzmann constant and T the absolute 
temperature, EF the Fermi level. F1f2 is the Fermi-Dirac 
int egr a1 

dx. (4) 

N; is the concentration of ionized donors, given by 

(5) 

where ND is the donor concentration, 90 the spin degen- 
eracy factor (2 for GaAs), ED the donor energy level. The 
band edges depend on the potential through 

where $2’ is the work function of the electrode assumed 
as a reference for the potential q5 and the voltage, and x is 
the electron affinity. In addition, Ev (r) = Ec (r) - Eg (r), 
where E, is the energy gap. 
Boundary conditions 
As far as the boundary conditions are concerned, Dirich- 
let conditions are enforced for the potential at the gate 

surfaces (i.e. + = $2) - & - $k), where & is the volt- 
age applied to gate i and &,? is its work function) while 
on the lateral boundary regions of the simulation domain 
Neumann boundary conditions with zero perpendicular 
electric field are enforced. 

The choice of proper boundary conditions at the ex- 
posed GaAs surface requires some discussion. The prob- 
lem is easily solved at equilibrium, when all the gates are 
grounded, and a constant Fermi level extends over the 
simulation domain: in this case, the assumption of Fermi 
level pinning is clearly applicable, and is a very good ap- 
proximation for the GaAs surface [7]. When different 
voltages are applied to the gates, even in the absence of 
charge transport, there seems to be no viable criterium 
for the choice of a Fermi level which properly describes 
the occupancy of surface states. It is possible to find in 
the literature detailed discussions about the correct shape 
of the density of surface states [8] or about procedures to 
include surface states in a numerical simulation [9], but 
these contributions can be used only if is easy to define a 
Fermi level. 

In this paper, we have chosen a very simple approach, 
originally proposed in Ref. [lo], which consists in assum- 
ing that the surface charge density is frozen in when the 
sample is cooled down, and does not change with the 
gate voltages. In this way, the surface charge is simply a 
constant source term in the Poisson equation. The only 
drawback of this approach is that a large volume outside 
the semiconductor should be included in the simulation 
domain, since no boundary conditions can be imposed at 
the exposed GaAs surface. We have overcome this prob- 
lem by noticing that, due to the large relative dielectric 
constant in GaAs, any variation of the electric field in 
the air above the device should be reduced by an order 
of magnitude in the GaAs. From a 2D simulation, we 
have learned that, by imposing a constant surface charge 
density and by varying the voltage applied to a metal 
gate within a reasonable range, the electric field at the 
exposed GaAs surface, on the GaAs side, varies only by 
a few percent. 

Within a reasonable approximation, the electric field 
on the GaAs side at the exposed GaAs surface can be 
therefore considered as constant, and equal to the value 
calculated at equilibrium with the assumption of Fermi 
level pinning. The problem remains of the value at which 
the Fermi level at equilibrium should be pinned: we have 
chosen the value which provides the best fit of the pinch- 
off voltage with experiments [ll], i.e., 5.25 eV below the 
vacuum level, corrisponding to a normal component of 
the electric field at the surface of 88.2 V/pm. 

The contribution to the potential from the charge in 
the dot is now computed by solving again the Poisson 
equation, assuming the charge in the dot volume Rdot as 
the only source term, i.e., 

(6vd)dot) = qndot ,  (7) 

where ndot = n for r E %Jot, 71dot = 0 otherwise. The 
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Figure 2: Confining potential for the electrons in the 
plane of the GaAs-AIGaAs heterointerface. 

confining potential for the electrons in the dot is therefore 

h o n f  = EC + d d o t .  (8) 

The SchrSdinger problem 
The many-body Schrodinger equation should be 

solved with the confining potential given by (8) on a 3D 
domain. However, we can assume that confinement in 
the vertical direction is much stronger than that on the 
horizontal plane, so that only the first vertical subband is 
occupied: in such a way we can decouple the 3D problem 
into a 2D problem at the heterointerface plane, and a 1D 
problem in the vertical direction. 

In particular, we solve the single particle Schrodinger 
equation in the vertical direction (along the z-axis): 

where x 0 , y o  define the central point on the horizontal 
plane. Let the ground state eigenvalue and eigenfunction 
be EO and xo ( z ) ,  respectively: the confining potential 
seen by electrons at the heterointerface plane is that given 
by % D ( x , ~ J )  = Vconf(Z,y ,zo)  + EO, where zo is the z- 
coordinate of the 2DEG plane. In Fig. 2 v2D is shown 
for the case of Vs = -0.16 V. 

Within the framework of density functional theory, 
the 2D Schrodinger equation reads: 

Kx + Korr ]  vi eivi, (10) 

where VC is the Coulomb interaction term, Vex and V,,,, 
are the exchange and correlation terms from the theory 
of Tanatar and Ceperley [12]. The details of the solu- 
tion of Eq. 10 can be found in Ref. [13]. The electron- 
electron interaction is modeled consistently with the Neu- 
mann boundary conditions enforced at the exposed sur- 
face, i.e., with negative image charges, which warrant 

constant value of the electric field perpendicular to the 
surface. The simulation starts with an initial guess of 
the number of electrons in the dot. This number is then 
adjusted with the criterion that the chemical potential in 
the dot must be the largest possible below the Fermi level 
in the bulk. 

The quantum density of electrons in the quantum dot 
is therefore 

N 

n q u a n t u m ( x , ~ , z )  = I X ( ~ ) I ~  I P ~ ( x , Y ) I ~ .  (11) 
j=1 

The contribution from electrons in the dot is obtained by 
solving 

V . (eV4quantum)  = qnquantum, 9 (12) 
and the confining potential of the quantum constriction 
is obtained as 

h D q u a n t u m ( 2 ,  Y) = v 2 D ( x ,  Y) - &quantum(X, Y, 20). (13) 

By means of the recursive Green’s function formal- 
ism, it is now possible to  calculate the resistance of the 
quantum point contact defined by V2Dquantum. The de- 
tails of the method are beyond the scope of this paper 
and can be found in [5]. 
Voltage sweep 

When the plunger gate voltage is modified, instead 
of solving again the 3D Poisson equation, we use a semi- 
analytical method [14] to evaluate the correction to the 
confining potential on the plane of the ZDEG, assuming 
that the other charges in the structure remain unchanged. 

3. Results 
In Fig. 3 the detector resistance is plotted as a func- 

tion of the plunger gate voltage for four different voltages 
applied to gate 5: the lower the voltage applied to  gate 5, 
the higher the initial detector resistance. For a plunger 
gate voltage V2 of -0.61 V the dot is completely depleted. 
As V2 is raised in steps of 10 mV, the confining potential 
on the heterointerface plane is lowered: as long as N is 
constant the detector resistance decreases; while, when 
one electron is added to the dot, Coulomb repulsion rises 
the confining potential of the quantum costriction, caus- 
ing an increase of a few percent in the detector resistance. 
The electrons in the dot for a give? V2 = v are given by 
the number of peaks to  the left of V .  

As can be seen, a high sensitivity can be obtained 
if conduction in the quantum wire is essentially in the 
tunneling regime, as in the cases of Figs. 3(d) and 3(c), 
corresponding to an initial resistance much higher than 
2e2/h (12.728 kQ), Le., that associated with a single prop- 
agating mode in the quantum wire. This is simply due 
to  the fact that the transmission probability in the case 
of tunneling is extremely sensitive to a variation of the 
confining potential profile. For values of Vs lower than 
-0.18 V the quantum wire is practically pinched off. 
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Figure 3: Detector resistances as a function of the voltage 
applied to the plunger gate for four different values of the 
voltage Vs. For Vs lower than -0.18 V, the quantum wire 
has negligible conductance. 

Conclusion 
Modeling even a simple experiment such as the one 

described in this paper can require prohibitive computa- 
tional resources. A practical way of solving the problem 
consists in adopting a simplified approach, in which self- 
consistency requirements are only partially met. With its 
limitations, this solution allows to address realistic situa- 
tions and to gain otherwise unattainable insights into the 
experiment. For the structure we have investigated, it has 
been possible to obtain good qualitative agreement with 
the experiments and to derive criteria for tuning the gate 
voltages in order to optimize the detector sensitivity. 
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