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1. Introduction 
Shot noise has attracted a lot of attention in meso- 

scopic conductors becimse it gives information on the tem- 
poral correlation of the electrons, which is not contained 
in the conductance [1][2]. The theory of shot noise in 
single-electron tunneling devices has been developed by 
Hershfield et al. [3], where the electron-electron inter- 
action in the dot has been described by charging energy 
in terms of a classicatlly defined capacitance. Although 
the so-called orthodox model of single-electron tunneling 
seems to be reasonable for metallic quantum dot systems 
with fine subband spacings, it may be impossible to ap- 
ply it to a semiconductor quantum dot with larger level 
spacings. On the otlher hand, as a quantum transport 
theory, the Anderson model has been presented to ana- 
lyze the noise suppression due to Coulomb interactions 
for a Coulomb staircase [4]. However, even there, only a 
two-level quantum dot with very narrow level spacings is 
discussed. 

In this paper, we propose a novel approach based on 
interacting Green's functions on a tight-binding basis to 
analyze the current fluctuation through a semiconductor 
quantum dot, where 'electron-electron interaction is rep- 
resented by the retarded self-energy. 

2. Theory 
One-dimensional niodel 

Figure 1 shows i,he one-dimensional double-barrier 
structure consisting of two semi-infinite perfect leads, two 
barriers and a quantum dot. The source-drain voltage 
U / e  is defined as the difference in the electrochemical po- 
tentials between the left and right electrodes. The po- 
tential in the dot is assumed to drop linearly by the ap- 
plied voltage. In our tight-binding approximation, spin- 
less electrons with a single basis state per site are assumed 
(single-band calculatilon). The Hamiltonian will be repre- 
sented in second quantized form, where the single-particle 
basis states are taken to be spatially localized pseudo- 
Wannier states. Furthermore, only the nearest-neighbor 
hopping between sites is considered. The effect of barri- 
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Figure 1: Schematic illustration of a one-dimensional 
double-barrier quantum dot. Both leads are semi-infinite. 
p ~ ,  p~ and p ~ g  are the chemical potentials of the left lead, 
the right lead and the dot, respectively. U is the potential 
in the right lead due to the applied bias. 

ers is introduced by means of the coupling energy between 
the dot and the lead. Electron-electron interaction is as- 
sumed only in the dot. 

The Hamiltonian of the system is written generally 
as 

where HI denotes the noninteracting Hamiltonians of the 
left (right) lead ( I  = L L ,  RL) ,  and the quantum dot ( I  = 
D ) ,  respectively. HT denotes the couplings between the 
dot and the leads, He,, the electron-electron interaction 
on the dot, and Hc,  the external potential. 

The term of electron-electron interaction He, is gen- 
erally given as 

where i, j ,  k and I are indices for sites in our pseudo- 
Wannier basis. One can immediately see that there is a 
set of dominant terms corresponding to i = k and j = I ,  
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giving established rules of the perturbation theory. The lowest- 
order terms are represented by [5] 

(3) 
He,  = -xV..n.fi. 1 

2 83 3 ,  

-idE - ij 
CR(2) I n  = 6 Im M k  J F G & ( E )  where Kjij is rewritten as Kj for simplicity. When the 

sites i and j are different, the matrix element V,j is esti- 
k € D  

mated as [5] (9) 

i f j '  (4) where I,m E D.  On the other hand, C& is always found 
to be zero. The nonequilibrium Green's functions G R ( E )  

where Vo is the strength ofthe interaction between nearest and G<(E> be Obtained by eqs. 
neighbors. Here, we neglect the i = j interaction term (7)-(9) self-consistently~ 
because we are only spinless electrons with Once the nonequilibrium Green's functions have been 
a single basis state per site. we note that the model is calculated, the expectation values of the steady-state cur- 

rent ( I )  and the total electron number on the dot ( N )  are easily extended to account for spin per site. 
Noise power spectrum obtained directly from G<(E).  

Keldysh's perturbation theory [6] [7] based on etLD O0 dE 

VO v.. - - 
I i - j  1 '  $3 - 

nonequilibrium real-time Green's functions is applied to  = Tim - 2T [G,<u(E) - G&r(E)I 

( N )  = / 2 G;(E).  (11 )  

calculate the quantum transport in the quantum dot. In 
the theory, the electron-electron interaction is well incor- 
porated as a term of self-energy through the perturba- 
tion series. 
GR(t - t ' ) ,  are used for the quantum transport. The re- 
tarded Green's function and the correlation Green's func- 
tion are defined, respectively, as 

(10) ( a  E LL;  a E D;  a,a = nn), 

Only two Green's functions, G<(t - t ' )  and 
I €  D 

The noise power spectrum is related to the pourier 
transform of the current correlation function as [8] 

J - - 0 3  

+AI,,( 0 )AIaa  ( 7.))  

(a  E L L ;  a E D;  a,a = nn), (12 )  
where e(t - "1 denotes the step function. { A B )  = where AI,, = I,, - ( I a a ) ,  The noise power spectrum 
AB+BA is the anticommutator, and (. . .) represents sta- derived from eq. (12 )  is expressed in the form of the two- 
tistical expectation values over all available states. In the electron Green,s function, which will be approximated as 
steady-state transport, the Green's functions are Fourier the sum of products of two one-electron Green's functions transformed with respect to the relative time T = t - t', using Wick's theorem. Since the noise power is constant 
and denoted by G R ( E )  and G<(E). They satisfy the over a very wide frequency range, we only investigate the 
following steady-state transport equations derived from zero-frequency shot noise. Then, the noise power is rep- 
Dyson's equation resented as 

where Green's functions and the self-energies (ER and 
C < )  are matrices in site space and functions of energy E .  
The GRo and G'O terms are the Green's function associ- 
ated with a noninteracting system. They are determined 
exactly. The self-energies Xi", are comprised of a sum 
of the single-particle part Czl) and the electron-electron 
interaction part C z 2 ) .  C z l )  is given by the nearest- 
neighbor hopping term t i ,  in the dot, and the coupling 
term tLD ( tRD)  at  the left (right) lead-dot interface. The 
two-particle interaction term C z 2 )  is obtained using the 

where GG(E) = GG(E) + G$(E) - (G$)*(E),  and i ,  
j = a,  a. Here, it should be pointed out that eq. (13) 
is completely satisfied when the interaction between elec- 
trons is neglected. 

3. Numerical Results 
In this study, the unit of energy is taken to be Itl, 

where t is the hopping energy. Unless otherwise noted, the 
following parameters will be used throughout the paper; 
the temperature is zero, and the frequency is zero. In two 
leads and the dot, the on-site energy is set to be 2[ltI] and 
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Figure 2: Coulomb oscillation characteristics (a), shot- 
noise power (b), and noise power ratio (c) as a func- 
tion of the chemical potential of the dot with equal bar- 
riers ( tLD = tRD =: -0.3[ltl]). Coulomb interaction 
between electrons Vo is 0.3[ltl] for solid-line curves and 
zero for dashed-line curves. The source-drain voltage is 
O.OOl[ltl/e]. The number of sites on the dot is 9. 

the hopping energy is -l[ltl]. The number of sites on the 
dot is set as 9 for the Coulomb oscillation, and 21 for the 
Coulomb staircase. 
Shot noise for Coulomb oscillation 

First, the shot noise characteristics for Coulomb os- 
cillation, are calculated for a dot with equal barriers as 
a function of the cheinical potential of the dot. In Fig. 
2, the current and the number of electrons on the dot, 
the noise power, and the noise power ratio defined by 
S/2el  are plotted in (a), (b) and (c),  respectively, for 
the two interacting strengths of electrons between near- 
est neighbors (Vo = 0.3[ltI] for solid line curves and zero 
for dashed line curves). In the calculation, the external 
source-drain voltage is set to be very small. Figure 2(a) 
shows the Coulomb oscillation properties of the dot. At 
the peaks of the Coulomb oscillations, the current noise 
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Figure 3: Coulomb oscillation characteristics (a), shot- 
noise power (b), and noise power ratio (c) as a function 
of the chemical potential of the dot with equal barriers 
(tLD = tRD = -0.6[ltl]). Coulomb interaction between 
electrons Vo is 0.3[t]. The source-drain voltage is varied 
from 0.03[ltl/e] to O.O9[ltl/e] in a O.O3[ltl/e] step. The 
number of sites on the dot is 9. 

is strongly suppressed as shown in Fig. 2(b). The vari- 
ation of the noise power ratio is shown in Fig. 2(c), as 
a function of chemical potential. It takes a value of one 
when no current flows through the quantum dot, and is 
close to zero at the peaks of Coulomb oscillations. On the 
other hand, the influence of the Coulomb interaction be- 
tween electrons on the shot noise is illustrated by dashed 
lines in Fig. 2. We found that although the periods of 
Coulomb oscillations change due to the Coulomb interac- 
tion, the noise characteristics themselves hardly change. 
This suggests that the correlation due to Coulomb in- 
teraction between the electrons in the current-carrying 
state and the bound state is extremely weak in Coulomb 
oscillations. When the source-drain voltage V / e  ia in- 
creased from 0.03[ltI/e] to O.O9[ltl/e] in a 0.03[ltl/e] step, 
the Coulomb oscillation characteristics change greatly as 
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Figure 4: Coulomb staircase characteristics (a), shot- 
noise power (b), and noise power ratio (c) as a function 
of the tunneling current for the dot with equal barriers 
(tLD = tRD = -O.l[ltl]). Vi = O.l[ltl] and p~ = 2.2[ltl]. 
The number of sites on the dot is 21. 

shown in Fig. 3. At the peaks of the Coulomb oscilla- 
tions, as the source-drain voltage increases, the current 
noise is less suppressed and accordingly the noise power 
ratio goes up. The wider conductance peaks compared to  
Fig. 2 are due to the stronger dot-lead coupling. 
Shot noise for Coulomb staircase 

Next, we study the shot-noise characteristics for the 
Coulomb staircase. Figure 4 shows the Coulomb staircase 
characteristics (a), the shot-noise power (b), and the noise 
power ratio (c) for a dot with equal barriers as functions 
of tunneling current. The averaged I-V characteristics 
have steplike increases of current with voltage. At each 
subsequent step in the current, the number of current- 
carrying electrons increases by one. It is found, from Fig. 
4(a), that the expectation value of the electron number on 
the dot is not an integer but changes roughly to  one half 

for each opening, which is a reasonable value for the dot 
with equal barriers. I t  is found, from Fig. 4(b), that the 
shot-noise power does not increase linearly with current 
but is suppressed over each current step. Consequently, 
the noise power ratio changes periodically with the cur- 
rent as shown in Fig. 4(c). It has a minimum value of 
about 0.4 and is 0.5 on average. 

In Coulomb oscillation where the external source- 
drain voltage is set to  be extremely small, only one level 
contributes to the transmission. On the other hand, in the 
Coulomb staircase, all the states which is broadened by 
the self-energy due to  the external coupling and interac- 
tions, participate in the transport. Therefore, the strong 
correlation induced by the Pauli principle is expected in 
Coulomb oscillation rather than in Coulomb staircase. 

4. Conclusion 
We have studied the shot-noise characteristics of 

semiconductor quantum dots using Keldysh's perturba- 
tion theory based on nonequilibrium Green's function 
techniques, where the electron-electron interaction is well 
described in terms of self-energy. We have found that 
the shot noise a t  peaks of Coulomb oscillations decreases 
sharply to  almost zero when the two barriers are equal. 
We have also found that the Coulomb interaction between 
the electrons in the current-carrying state and the bound 
state hardly affect the noise characteristics in Coulomb 
oscillations. As for the Coulomb staircase, we have found 
that the shot noise is suppressed over each current step 
and the noise power ratio changes periodically with the 
current. However, the noise power ratio has a minimum 
value of about 0.4 and is 0.5 on average for a dot with 
equal barriers. 
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