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1. Introduction 
Semiconductor device integration has progressed 

rapidly in recent years, often surpassing predictions and 
roadmap objectives. Device scaling is now pushing the 
gat,e length of commercial MOSFET integrated transis- 
tors closer and closer to 0.1 p m ,  with experimental devices 
already well beyond that limit. In the conduction channel 
of such short silicon devices, very large fields are estab- 
lished even if every effort is made to reduce bias voltages, 
and the energy distribution of carriers is very appreciably 
out of equilibrium. In particular, the high energy tail of 
the carrier distribution becomes of great importance to 
understand the details of transport and device behavior. 
The presence of these.so called hot carriers is typically 
linked to reliability problems. 

Device simulation has evolved over the last thirty 
years, developing new models and simulation approaches 
of increasing complexity in the attempt of capturing new 
hot carriers and the quantum effects manifesting them- 
selves as scaling is pushed down to its technological lim- 
its and new device structures are introduced. Such effects 
have included velocity overshoot, interface scattering, in- 
jection across heterointerfaces, ballistic transport , quan- 
tum tunneling, and interface damage. The purpose of 
this brief review is to survey the hierarchy of physical ap- 
proaches for semiconductor transport and device simula- 
tion, giving an indication of the limits of applicability and 
approximations underlying the various approaches. The 
main focus is on the relevance of the approaches for the 
simulation of hot carrier effects in deeply scaled devices. 

2. Simulation Hierarchy 
A schematic diagram for the complete hierarchy of 

approaches that can be applied to device simulation is 
shown in Fig. 1. At the top of the hierarchy we have 
approaches based on a quantum description of transport. 
This area it is still far from maturity, being the subject of 
much research efforts. The levels below are based on the 
Boltzmann Transport equation or its simplifications, with 
a semi-classical (or classical) description of transport. All 
the simulation levels, except for the compact approaches 

at the bottom of the hierarchy, involve the solution of 
a set of coupled partial differential equations, where the 
transport equation can actually be an integro-differential 
equation as is the case for the Boltzmann equation and 
for quantum formulations including scattering. Analyt- 
ical approaches are based on integral solutions of such 
semiconductor equations, suitable as building blocks for 
the solution of complete circuits. In the case of parti- 
cle Monte Carlo approaches, the transport equation is 
emulated by a computer experiment. With few excep- 
tions, self-consistency is obtained by coupling the trans- 
port equations with the Poisson equation of electrostatics. 
The various approache will be discussed below, starting 
from the bottom level of the hierarchy. 

Compact Approaches - With this name we refer 
to a broad category of analytical or semi-analytical meth- 
ods that are formulated to provide a simple solution for 
device behavior , whenever possible in closed analytical 
form. The starting point is often a spatial integration of 
a drift-diffusion formulation, that yields terminal current 
values. The integration can be performed if simplifica- 
tions are made in the geometry and doping distribution 
of the model structure. The limitations of the physi- 
cal model are the same of the drift-diffusion formulation 
adopted. Therefore, the computational advantage in the 
transition from a numerical drift-diffusion simulation to 
an analytical formulation, comes at the cost of loss in 
resolution of the structure features. In order to capture 
the details of terminal current characteristics as verified 
in experiments, compact models are modified through the 
addition of adjustable terms that must be calibrated ap- 
propriately. The limitation of this approach is in the lack 
of scalability. Since the empirical fitting has to be per- 
formed in a statistical sense, but ignoring the underlying 
non-linear physical transport, new sets of calibration pa- 
rameters are necessary when dimensions and other vari- 
ables (dopings, bias voltages) are changed. 

Analytical or integrated formulations are still of enor- 
mous value, because fast approaches are essential for effi- 
cient circuit design. The main problem, when devices are 
scaled into the deep-submicron regime, is in the rapidly 
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Figure 1: Schematic diagram illustrating the simulation 
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soaring costs of experimental verification for model cali- 
bration. This stresses the importance of detailed phys- 
ical approaches that are scalable and can provide suf- 
ficiently quantitative answers, to supplement or replace 
experimental verification for the purpose of calibration of 
simple models. 

Drift-Diffusion Approaches - The drift-diffusion 
formulation is the simplest transport model obtained from 
moments of Boltzmainn equation. The model adds to the 
Poisson equation continuity equations that account for 
charge flow of electrons and holes [l]. The current formu- 
lation in the continuity equations contains all the main 
transport information through the mobility and the dif- 
fusivity. The underlying assumption is equilibrium of the 
carrier gas. One can go beyond this equilibrium regime, 
by introducing a field dependent mobility and diffusiv- 
ity, which empirically extends the validity of the model 
into the hot carrier regime. In this way one introduces 
only a local steady-state (bulk-like) equilibrium of the 
carrier population with the given field [2]. In order to 
introduce in physicaJ way the effect of overshoot, ad- 
ditional terms dependent on the field derivative of the 
field must be added (augmented drift-diffusion). This 
approach introduces severe non-linearities which make a 

multi-dimensional numerical solution difficult [3]. How- 
ever, the augmented drift-diffusion model is suitable for 
inclusion in compact models, where it has been found 
to  be useful [4]. Despite its limitations, the basic drift- 
diffusion approach remains the workhorse of industry be- 
cause of the well established solution methodologies and 
the availability of robust vendor supported implementa- 
tion. 

Moments of Boltzmann Equation - The basic 
drift-diffusion approach is improved with additional flow 
equations which are obtained through higher order mo- 
ments of the Boltzmann equation. The so-called hydro- 
dynamic model adds a flow equation for average momen- 
tum and one for average energyi [5].  Despite considerable 
increase of information, the truncation of the moments se- 
quence must be appropriately closed with the addition of 
an appropriate closed form equation for the heat flow. It 
has been recognized that the classical Franz-Wiedemann 
law, as introduced in th  original model, incorrectly rep- 
resents the heat flow in typical device channels, partic- 
ularly at the drain junction where most hot carriers are 
[6]. A number of empirical [6] or physical approaches [7] 
have been proposed to improve closure of the hydrody- 
namic model, which for reason of space cannot be fully 
reviewed here. In alternative, it has also been proposed 
to introduce an additional moment equation of higher or- 
der. There are also numerical challenges, due to the fact 
that the hydrodynamic model may have hyperbolic (i.e. 
wave) character, with the formation of numerical shocks 
in the solution which need to be adequately resolved 181. 
A very large mathematical literature has been devoted to 
the solution of this kind of problems. Yet, although the 
hydrodynamic model has been known in its original form 
since 1970, the wide variety of formulations and numeri- 
cal approaches have not yielded a standardized approach, 
which has somewhat hampered its widespread adoption 
for industrial investigations. 

An alternative approach, usually referred to as En- 
ergy Transport model, only adds an energy flow equation 
and differs from the hydrodynamic model in the way the 
moment averaging is carried out [9, 101. A microscopic 
relaxation time is defined for the distribution function, 
rather than average momentum and energy relaxation 
time obtained after the moment operation in the hydro- 
dynamics formulation. The main advantage of the energy 
transport model is in the fact that from a numerical point 
of view it retains the same structure of drift-diffusion 
[lo]. Therefore, it is quite easy to implement it in the 
well established and robust numerical platforms for drift- 
diffusion simulation. 

The models at this level of the hierarchy provide a 
physical way to account for average hot carrier effects, 
which leads to improved potential solution and terminal 
currents estimation. However, these models do not pro- 
vide any information regarding the energy dependence of 
the distribution function. 

Solution of Boltzmann Equation - The Boltz- 
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mann transport equation (BTE) is a formidable integro- 
differential problem. for a 3-D time-dependent simula- 
tion, one has to keep track of 7 coordinates because both 
momentum and real space are involved. Only recently it 
has been possible to attempt the direct solution of the 
BTE, mainly within the spherical harmonic expansion 
approximation for the distribution function [ll].  Other 
methods of solution use discretized numerical strategies, 
most notably the Scattering Matrix approach [12] and the 
Cellular Automata approach [l3]. Since the BTE pro- 
vides information on the distribution function, one needs 
to worry about the correct inclusion of band structure 
effects. In all the lower levels of the hierarchy the band 
structure is heavily simplified. Usually, a single parabolic 
or non-parabolic band band is considered, although mul- 
tiple valleys can be included at the hydrodynamic level, 
at the cost of including an extra set of transport equations 
per valley. A similar problem exists when the Boltzmann 
equation is solved as a partial differential equation. In- 
clusion of a complete bandstructure is easier to imple- 
ment in the case of numerical approximations, since large 
tables can be precalculated which include the detailed 
bandstructure effects. 

Particle Monte Carlo Approaches - The most 
successful technique for the solution of the BTE has been 
to-date the particle Monte Carlo approach [14-171. A de- 
tailed computer experiment follows individual carriers in- 
side the simulation domain, with free flights interrupted 
by scattering events. When done carefully, this approach 
can be shown to be equivalent to the Boltzmann equation, 
and actually one can push the validity of Monte Carlo be- 
yond the limits of definition of the BTE. Since numerical 
tables are used to provide all the physical information 
about the semiconductor, a complete band structure can 
be readily accounted for simply at the cost of sufficiently 
large tables. The numerical methods mentioned above 
(scattering matrix, cellular automata) are similar concep- 
tually to the standard Monte Carlo approach, but differ 
in the fact that they operate directly on a distribution 
function rather than on the actual ensemble of partciles. 
Another method, the Mutation Operator Monte Carlo 
(MOMC) [18] which was developed as part of an evolu- 
tionary algorithm optimization, also operates directly on 
the distribution function and will be discussed elsewhere 
in these proceedings. 

One of the advantages of Monte Carlo is the relative 
maturity of the approach, since it has been applied to 
practical device simulation since the mid-70’s. The ob- 
vious disadvantage of the technique is the somputational 
cost, both in terms of CPU and memory. However, the 
rapid advanced of computer platforms are making Monte 
Carlo applications more affordable and practical today. 

Quantum Approaches - Quantum device simula- 
tion is the more immature area due to the intrinsic diffi- 
culties in even formulating a complete device model that 
could be realistically solved. While the solution of a self- 
consistent transport problem is relatively feasible in the 

case of ballistic motion, inclusion of scattering phenomena 
at normal device operating temperature remains a very 
difficult task. A variety of formulations have been used 
to solve quantum problem: Schrodinger equation, Wigner 
function and density matrix formalism, non-equilibrium 
Green’s functions, quantum hydrodynamic model [19-231. 
All of these techniques have advantages and disadvan- 
tages, and tend to be more suitable to study specific as- 
pects or features of transport rather than complete de- 
vices. Most of the attention has been paid to heterojunc- 
tion devices, because of the more pronounced quantum 
effects, in part due to the lower effective mass. While 
a complete review of quantum approaches is beyond the 
scope of this work, it is worth noticing the emerging im- 
portance of atomic level calculations which go beyond the 
typical effective mass approximation used in the formu- 
lation of quantum transport models. As attention is fo- 
cusing on the nanometer regime, system granularity and 
details of interfaces must be dealt with the approaches 
typical of material science and physical chemistry, since 
the approximations of smooth dopings and carrier densi- 
ties tend to brak down. For traditional integrated devices 
in the extreme scaling limit, quantum effects are useful 
when combined with the semi-classical techniques intro- 
duced above. For instance, quantum features can be used 
to dress a Monte Carlo particle (e.g. tunneling when the 
particles reach an interface) while the simulation is car- 
ried on in many respect still classically. 

3. Simulation Needs for Deep-Scaling 
During the first decade of the next century, indus- 

try is likely to begin large scale production of integrated 
circuits with MOS devices having channel length at or 
below O.lpm (100 nm). In order to continue the scaling 
trends followed until now, the range from 0.1 to 0.01 p m  
needs to be better understood if predictive physical simu- 
lation tools must be made available. For silicon, the mean 
free path of carriers at room temperature should remain 
below 0.01 p m  (100 A) and semi-classical approaches at 
the level of the BTE can still be valid. However, in this 
size range, profound changes take place in the underlying 
material models. Consider for instance a doping of l0l8 
~ m - ~ .  On the average, only one dopant ion is present in 
a cube with 100 A side. Even at lo2’ cm-3 the size of 
this cube would be about 22 A. It is clear that dopings 
cannot no longer be treated as a smooth jellium, rather, 
granular effects of the material need to be incorporated 
in a model. Similar issues are associated to detailed in- 
teraction of carriers with interfaces. 

Contacts will also need to be revisited, either because 
the Schottky barrier at the metal/semiconductor inter- 
face will play a role in the device behavior or because 
hot carrier effects will become more pronounced in con- 
tact doping regions. Another aspect of scaling will involve 
the lateral device direction, which eventually will become 
small enough to generate true 3-D effects in MOS devices. 
Until now, little or no use has been made of multidimen- 
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sionality of devices for the purpose of creating new logic 
functions, while memory cell have exploited in some mea- 
sure 3-D effect for some time. It is conceivable that novel 
device concepts could be developed as the current flow 
could be diverted from the typical quasi-l-D flow of stan- 
dard MOS structures. Basic changes of device topology 
would have to go hand-in-hand with changes in circuit 
architecture, while facing increasing challenges from the 
point of view of powler consumption and dissipation as 
well as manufacturability. 

Quantum effects are expected to creep in gradually 
as devices are further scaled. While the standard com- 
pact and drift-diffusion approaches can (and will) be cal- 
ibrated to duplicate the device characteristics of deeply 
scaled devices, by artful tuning of empirical parameters, 
physical simulation approaches will need to carefully con- 
sider quantum tunneling and size quantization. Within 
a semi-classical framework, the main question is how to 
couple classical trajectories with quantum dominated re- 
gions. An interesting question is related to the lateral lim- 
its of scalability of coinduction channels. It is found that 
it is possible to obtain well confined and quasi-monomode 
quantum wire channels at  room temperature in silicon, 
when the gate contact is shape as a T, through an appro- 
priate etching of the oxide. While an undoped substrate is 
unable to isolate a deep quantum wire channel and a high 
substrate doping may be undesirable, an acceptable con- 
finement can be obtained if an undoped region containing 
the conduction channiel is sandwiched between the oxide 
interface and a highly doped ground plane. 

Due to granularity of the system, it is also important 
to resolve carefully caoulombian effects. An interesting 
way to go beyond the standard numerical approaches for 
Poisson equation is to adopt a meshless formalism, where 
points, rather than meshes, are sprinkled in the device 
domain to generate the appropriate approximation to the 
differential operator by a finite element or collocation pro- 
cedure. This is a natural way to treat Monte Carlo prob- 
lems in 3-D since the collocation points can be associated 
to the particles themselves, generating a procedure which 
is automatically adaptive since the particle locations are 
tracked exactly at  each simulation step. This approach 
will also be introduced elsewhere in these proceddings. 

4. Conclusions 
The standard simulation hierarchy has served well the 

device community and industry for practical devices that 
are approaching the 0.1 p m  channel length limit. A gap 
exists between quantum models and the more advanced 
semi-classical approaches based on BTE. The main chal- 
lenge for device simulation in the 0.1 pm - 0.01 pm range 
will be to bridge this gap since we expect that silicon 
devices in this space scale range will present a mixture 
of quantum and semi-classical quantum features. Since 
granularity of the material system will become very im- 
portant, the development of atomistic level models will 
also be an essential component to well resolve issues of 

device reliability and carrier-interface interaction. 
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