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1. Introduction 
The Ensemble Monte Carlo (EMC) method [l] is 

presently considered a mature technique for semiconduc- 
tor device simulation based on the paradigm of semi- 
classical charge transport. However, the relatively heavy 
computational burden of the EMC approach has lim- 
ited its use to  mainly academic environments, particu- 
larly when non analytical, realistic band structures are 
used [2]. In order to reduce the computational demands 
of EMC simulation, the cellular automaton (CA) ap- 
proach was developed in the context of semiconductor 
device simulation [3]. In the CA approach, both k-space 
and real space are discretized, which simplifies the de- 
scription of scattering and the particle motion in real 
and momentum space. This technique was successfully 
demonstrated using an analytical, non-parabolic band 
model [3], where significant speed-up was observed com- 
pared to more traditional EMC methods. 

The aim of the present work is to demonstrate a 
new simulation approach, based on the CA method, 
that includes a full-band representation of the electronic 
structure and of the phonon spectra, while maintaining 
the short simulation times typical of the previous non- 
parabolic CA. Simulation results are shown for charge 
transport in bulk Si to demonstrate the equivalence of 
this new approach with full-band EMC simulation re- 
sults, as well as its efficiency. 

2. Physical model 
The band structure used in the full-band CA is 

computed using the empirical pseudopotential (EPM) 
method [4], while phonon spectra are obtained via the 
valence shell method [5]. The non-polar transition rate 
from a region centered in the point k in band v to a re- 
gion & centered around the point k’ in band v‘ is then 
approximated by 

where p is the semiconductor density, wqq is the frequency 
of a phonon of type and polarization 7 and wave vector 
q = k’ - k, Aq,”,(q) is the non-polax matrix element as 
defined (and approximated) in [2], Z is the overlap inte- 
gral, D,I (E‘, &) is the density of states in at energy 
E’ = E(k) f (AwVq) in band v‘, and, finally, nqq is the 
phonon occupation number at the lattice temperature. 
The density of states is evaluated using the well known 
linear analytical method of integration of the Brillouin 
zone introduced by Gilat and Raubenheimer [6] in its 
version for orthorhombic cells [7]. 

The transition rate in Eq. 1 is computed and tabu- 
lated for each cell in the grid of each energy band included 
in the model. In an analogous way, the impact ionization 
rate is computed and tabulated for each portion of the 
discretized first Brillouin Zone (BZ). ‘The model used to 
implement impact ionization in Si is a simple isotropic, 
multi-threshold [8] model: 

were E is the electron kinetic energy, E!:) = 1.2,1.8, and 
3.45 eV, P(2) = 6.25 x lolo, 3.0 x and 6.8 x 1014 s-l, 
for i = 1,2, and 3, respectively, and 6’ is the step function. 

It should be stressed that while the simplified scat- 
tering rates used here are essentially isotropic (apart from 
the overlap intergral in (l)) ,  the full-band approach pre- 
sented here is completely general in that fully anisotropic 
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rates in momentum space may be used without any in- 
crease in the computational burden. 

3. Implementation 
Choice of the final states 

The algorithm used to build the transition (or scat- 
tering) table is directly derived from that proposed by 
Kunikiyo et al. [9], and is organized in two parts: i) find 
all the final states for a given initial state, and ii) com- 
pute the probability for each of the final states. 

The first part of the task is accomplished by find- 
ing all cells which span an energy in the interval [eo f 
Eq,mzn, EO f eq,max] in the case of absorption (+ sign) or 
emission (- sign) of a phonon of type and polarization 
Q; E ~ , ~ ~ ~ ,  where ~ ~ , ~ i ~  are the maximum and minimum 
values of the energy of the phonon in BZ, and, eo is the 
energy of the carrier. The resulting set of cells represents 
all the final states that satisfy energy conservation. 

Once all possible final state candidates are known, 
the transition probability is computed for each of them 
from Eq. 1, taking thle wave vector of the phonon as the 
vector connecting the centers of the initial and the final 
cell. 

This process is repeated for all the phonon modes 
considered, for both absorption and the emission. The 
final states are sorted and recurrent states are grouped 
together, adding their probabilities. In other words, if 
two different scattering mechanisms result in the same 
final cell for a given initial state, the two final state scat- 
tering probabilities are added, and only the sum stored in 
the table. This grouping procedure allows the size of the 
transition table to be dramatically reduced. However, 
as a consequence, infiormation on the type of mechanism 
(i.e. the type of phonon mode and, consequently, its en- 
ergy) which generated a transition is lost. This procedure 
is different than the traditional Monte Carlo technique 
where this information is retained, and precludes any 
“post-scattering” correction of the carrier wave vector, 
which can result in an unacceptable error in energy con- 
servation, as clearly pointed out by Fischetti and Laux 
in [2]. The way in which we address this potential prob- 
lem is to use an inhomogeneously spaced grid, as dis- 
cussed in the next section. 

The computational advantage of this method is that 
once the transition table is built, no information concern- 
ing the carrier energy is required to simulate scattering 
events. In other words, scattering processes are simulated 
entirely in a discrete (cellular) momentum space, with- 
out the requirement of inverting the energy-momentum 
dispersion relation. 
Grid in momenta space 

The basic idea of the full band CA is to tabulate the 
total probability of scattering from each initial state k 
to any possible final k’. It is clear that the grid used 
to discretize the first BZ plays a crucial role in keeping 
the table dimensions manageable while at the same time 
accurately representing the energy dispersion in momen- 

tum space. 
The use of a homogeneous rectangular grid with typ- 

ical spacing 1 = 0.05(2n/a) (where a represents the lat- 
tice constant of the material) requires a computationally 
costly correction of the carrier wave vector after each 
scattering event in Si using a traditional Monte Carlo 
approach. This correction is even more difficult for the 
conduction band minima of GaAs [2] where the effective 
mass is much lighter. 

These problems have been addressed by using an in- 
homogeneous rectangular grid to represent momentum 
space in the transition table used in the present CA al- 
gorithm. The algorithms for computing the density of 
states and to track the particle motion in momentum 
space have been accordingly modified, and a simple but 
powerful user interface has been developed to allow easy 
input of the grid data (as well as other material and sim- 
ulation parameters). Of course, different grids have been 
defined for the different bands of each material. For ex- 
ample, the grid spacing in the regions around the minima 
of the conduction bands of Si is Isi = 0.02(27r/a) with a 
cell density one order of magnitude higher than the grid 
density used in [2]. 

Preliminary results clearly show that the use of an 
even finer grid (with spacing ~ G ~ A ~  = 0.012(27r/a), and a 
grid seventy times more dense than the one in [2]) around 
the I?-point allows the low field behavior of GaAs to be 
modeled within a full-band representation of the disper- 
sion relation. 

A problem that we consider still open is to find an au- 
tomatic method to generate an adequate grid. Currently, 
the grids are generated heuristically, accounting for the 
features of the 3D dispersion relation. This produces two 
negative consequences: 1) the energy discretization error 
is not constant over the BZ and 2) the process of gener- 
ating the grid is long and computationally costly. 

Tests have been done with a recursive branch-on-need 
bisection algorithm, driven by the energy spanned by a 
region of momentum space, and by its first derivative (to 
find the optimal direction of bisection). The algorithm, 
which recursively bisects a region of BZ if the interval of 
spanned energies is bigger than a given threshold, pro- 
duced excellent grids form the point of view of energy 
conservation and symmetry. However, the local nature of 
the branch process produces grids which are completely 
unsuitable for tracking particle along their Newtonian 
trajectories. Several attempts were performed, but no 
algorithm was found to eficiently follow a particle from 
one cell to another, when the number of neighbors at each 
side of each cell is arbitrary. 
Symmetry and structure of the transition table 

It is clear that the critical parameter of this full- 
band CA approach is the dimension of the transition ta- 
ble. The irregular grid, as well as the grouping of the 
final states which appear more than one time for a given 
initial state, are due to the need to keep the transition 
table as small as possible. Another crucial reduction is 
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obtained by tabulating the final states (wherever they oc- 
cur in the BZ) related to only those initial states which 
are contained in the irreducible wedge (IW) of the BZ. 
Initial states outside of the irreducible wedge are “ro- 
tated” inside the IW, processed, and the resulting final 
states are finally back-rotated. The transformation ma- 
trix from a cell outside the IW to the corresponding cell 
inside the wedge is obviously pre-computed, and requires 
a negligible amount of memory to be stored. 

Finally, it has to be observed that even if the grid 
is inhomogeneously spaced, it is built in such a way that 
symmetry is conserved for its nodes. In other words, each 
grid-point outside the IW is rotated to a point which is 
still a grid-point. This fact also ensures isotropy of the 
energy discretization error. 
Memory requirements 

The grid used to obtain the results shown in this 
paper spans the momentum space from the bottom of 
the conduction band in Si to an energy of 5.1 eV. The 
first two bands are discretized on ca. 79000 and 49000 
inhomogeneously spaced cells, respectively. Only cells in 
the first BZ are considered and stored. This energy range 
is spanned by the first 5 conduction bands, and, again, 
only regions of momentum space with energy within the 
mentioned range are considered. The resulting table is 
stored in less than 800 Mbyte of RAM. 

Each final state is represented in memory by 8 bytes 
containing a floating point representation of the proba- 
bility (4 Bytes), and the indices of the final state cell and 
band, as well as one one-bit flag used to discriminate 
states produced by impact ionization. Impact ionization 
processes are treated separately from all other mechnisms 
due to the multiplication effect which requires knowledge 
of the type of scattering occuring. Therefore, the final 
states probabilities due to this process are not combined 
with the other scattering mechanisms so that the multi- 
body final state can be properly accounted for. 

free flight 
scattering 

4. Results 
Figure 1 shows a comparison between results of pub- 

lished full-band EMC simulation [2] (lines), and the 
present full band CA (dots) for the energy and drift ve- 
locity as a function of the electric field in the (100) direc- 
tion in Si at  300K. Good agreement is found both in the 
energy and the drift velocity at  all fields, particularly at  
low field where discretization effects are expected to be 
most pronounced. 

Figure 2 illustrates the distribution function ver- 
sus energy at various electric fields, again showing good 
agreement with published full band EMC results. The 
energy dependent scattering rate averaged over all mo- 
mentum is shown as well. 

ud interpolated v d  from grid 
0.533 0.191 
0.051 0.050 

5 .  Benchmarks 
Measures of the execution time on a typical worksta- 

tion (here a 500 MHz DEC Alpha processor) are shown 
in Table 1. The number of simulated carriers (electrons) 
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Figure 1: Energy-field (left) and Velocity-field (right) 
curves in Si at 300K as computed with full-band EMC [2] 
(lines), and with CA (circles). 

is lo4, and the electric field applied on the (100) direction 
is lo7 V/m. Two sets of times are shown, for two different 
ways of computing the drift velocity. Since the present 
k-space results do not require the carrier velocity to simu- 
late the dynamics, the drift velocity can be pre-tabulated 
and taken from the nearest grid point rather than being 
interpolated. While this is an acceptable procedure for 
k-space simulation, a more accurate determination of the 
velocity has to be computed for device simulation when 
the CA is self-consistently coupled with a Poisson solver. 
Table 1 shows the CPU time per time step (1.2 fs) when 
the velocity is simply copied from the closest grid point 
(from grid row in Table 1) compared with a more exact 
computation by a linear interpolator (interpolated row). 
The results - shown in the effective row, given by the 

Table 1: CPU time, in seconds, per iteration, for a work- 
station equipped with a 500 MHz DEC Alpha processor. 

I 

effective 11 0.584 I 0.241 
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Figure 2: Electron distribution function in Si at 300K for 
various electric field strengths. The momentum averaged 
scattering rate is also shown as a function of energy on the 
right scale. 

total time minus the time spent with averages - clearly 
show that the scattering part of the carrier dynamics 
requires a small fraction of the total CPU time, while 
this part is typically the computationally more demand- 
ing component of a traditional full-band EMC. The main 
improvement in execution time in the CA is due to the 
fact that the final sta,te after scattering is selected in a 
single operation due to the pre-tabulated scattering ta- 
ble, with no costly inversion of the dispersion relation 
required after the scattering. 

6. Final remarks and future work 
In the present paper we have shown a new approach 

for particle-based simulation of charge transport in semi- 
conductor materials. Results were shown which are in 
excellent agreement with previous full band Monte Carl 
results from the literature. Benchmarks are also shown 
that demonstrate the high computational efficiency of the 
new method. 

Improvements of the present algorithm are aimed to 
two main goals: to extend the materials modeled by the 
simulator, and to include the real space representation 
of the carrier dynamics. The latter project involves the 
inclusion of a fast Poisson solver [lo] and an efficient car- 
rier tracking algorithm in real space, such that complex 
boundary conditions in real devices can be accounted for. 

Finally, the authors would like to comment on the ap- 
propriateness of the name used for this method. In com- 
putational electronics, the denomination “cellular au- 
tomaton” was initially chosen by P. Vogl at the Tech- 
nical University of Munich (in [3] and previous papers) 
to describe their method to simulate charge transport in 
semiconductor devices. That choice was justified by the 
many similarities of Tlogl’s approach with the definition 
of CA offered by Wolfram [1111 and with the method of 
Frish et aZ. [12] for solution of hydrodynamics problems. 

lcuriously, the fundamental papers written by Carlo Jacoboni 
et. al. on Monte Carlo [l], and the one written by Stephen Wolfram 
on cellular automata [ll:l were adjacent in the same issue of the 
journal where they appeared. 

The method presented in this paper is an evolution 
of the work initiated by the Munich group. However, 
many of the ‘‘cellular automaton” features of the algo- 
rithm have been modified (for example the free particle 
dynamics) such that the resulting code is more prop- 
erly regarded as a hybrid CA-Monte Carlo algorithm. 
However, as frequently happens the denomination of the 
method survived during its evolution, and, for the mo- 
ment, we have chosen not to change it. 

7. Acknowledgments 
The authors are grateful to Dr. M. Diir, Prof. P. Vogl 

and Prof. D. K. Ferry for their suggestions. One of us 
(M.S.) would like to express special gratitude to Dr. M. 
Fischetti for the invaluable advice and data patiently sup- 
plied in several occasions during the work. This work was 
supported by a grant from the National Science Founda- 
tion ECS-9796280. 

References 
C. Jacoboni and L. Reggiani, Reviews of Modern 
Physics 55, 645 (1983). 

M. V. Fischetti and S. E. Laux, Physical Review B 
38, 9721 (1988). 

K. Kometer, G. Zandler, and P. Vogl, Physical Re- 
view B 46, 1382 (1992). 

J. R. Chelikowsky and M. L. Cohen, Physical Re- 
view B 14, 556 (1976). 

K. Kunc and 0. H. Nielsen, Computer Physics Com- 
munications 17, 413 (1979). 

G. Gilat and L. Raubenheimer, 
144, 390 (1966). 

L. Raubenheimer and G.Gilat, 
157, 586 (1967). 

E. Cartier, M. Fischetti, E. Eklund, and F. McFeely, 
Applied Physics Letters 62, 3339 (1993). 

T. Kunikiyo, M. Takenaka, Y.Kamakura, M.Yamaji, 
H. Mizuno, M. Morifuji, K.Taniguchi, and C. Ham- 
aguchi, Journal of Applied Physics 75, 297 (1994). 

M. Saraniti, A. Rein, G. Zandler, P. Vogl, and 
P. Lugli, IEEE Transaction on Computer-aided 
Design of Integrated Circuits and Systems 15, 141 
(1996). 

S. Wolfram, Reviews of Modern Physics 55, 601 
(1983). 

Physical Review 

Physical Review 

[12] U. Frish, B. Hasslacher, and Y. Pomeau, Physical 
Review Letters 56, 1505 (1986). 

91 


