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1. Introduction 

Electron transport in nanoscale semiconductor devices 
is of increasing interest as CMOS is scaled toward 10-20 nm 
characteristic lengths. In this regime, the transport is 
expected to be dominated by quantum effects throughout the 
active region, even though quantum transport is not well 
established within a consistent conceptual framework [ 11. 
Nevertheless, several approaches to simulation of 
semiconductor devices have appeared in which the transport 
is handled quantum mechanically [2]. In these small 
structures, one must begin to worry about the effective size 
of the carriers themselves. In recent publications, at least 
one author has estimated that the effective size should be 
given by the inelastic mean free path (called the coherence 
length) [3,4]. This size can be many 10s of nanometers, and 
such a definition leads to a great many inconsistencies. 
Indeed, in some ballistic quantum dots, the inelastic mean 
free path can be hundreds of nanometers, much larger than 
the dot itself [ 5 ] .  As these dots contain many hundreds of 
electrons, the above definition cannot be reconciled with the 
experimental facts, and a smaller size must be considered. 
In this paper, the arguments for various sizes will be 
considered for electrons in semiconductor devices. In 
particular, in the quasi-two-dimensional electron gas of the 
ballistic quantum dots, it will be argued that the effective 
size of the electron packet is only hFh, a value providing an 
almost minimum uncertainty packet. This size also reflects 
the “squeezing” of the packet in two dimensions as the 
carrier density is increased (and resulting in a greater extent 
in the third dimension). 

2. Common Considerations 

In general, the idea behind the semi-classical picture, 
which has been heavily utilized in device modeling and in 
ensemble Monte Carlo treatments of electron transport, is 
that the dephasing length l4 is much smaller than the size 
scale L of the device. (Here, 16 is the inelastic mean free 
path and will also be referred to as the coherence length, but 
this is different from the often referred to coherence length 
in disorderd materials [6] . )  Thus, one may describe the 
electron in terms of its position rc, but the extent of the wave 
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packet is given by l4 [3,4]. The rationale lies in the fact that 
the electron is mainly described as a plane wave state of 
momentump = h k, and it is argued this plane wave remains 
coherent over a distance of the order of the inelastic mean 
free path. By coherent, it is generally meant that the plane 
wave is a single entity over this length, and it is impossible 
to describe where the electron actually is located by this 
wave. Hence, the size is equated to the coherence length. If 
the phase breaking process within the active device is 
characterized by an imaginary part of the Hamiltonian, given 
by ih 1224, then for weak phase breaking, the wave vector 
contains an imaginary term i124, This term causes the 
probability to decay over the phase breaking length, and this 
becomes an effective localization length. 
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Fig. 1 A conceptual device under bias. The source is at the left 
and the drain at the right, as indicated by the two gray areas, which 
may be considered to be the “contacts.” The areas to the left and 
right of the traditional active length L, indicated here as the 
decoherence regions, must now be considered part of the active 
device. 

The scattering-induced broadening of the energy 
spectrum is given by 6E 0 h vl21+ = h 1 2 ~ ~ .  This description 
can be considered to arise from the assertion that the 
uncertainty in position is def ied by the packet size 14 as Ap 
= fi/21+ , and 6E = [E(p+Ap) - E(p-Ap)]l2 = pAp/m 0 

hvI214. Even though this argument is consistent with the 
above introduction of the coherence length, this is a 
misleading argument. Indeed, when the description of the 



electron is a plane wavte in momentum space, it is difficult to 
talk about spatial variation at all, a point to which we return 
in the next section. This argument assumes that a 
momentum uncertainty automatically relates to an energy 
uncertainty, which is not the case. 

First, let us consider the prototypical device as an active 
region of length L, bounded by two contact regions in which 
the electrons must lose: their coherence completely (see Fig. 
1). We have argued earlier about the need to properly 
introduce decoherence effects for the carriers in order to 
bound the device properties within the active region [l]. If 
the decoherence is introduced by adding an imaginary 
potential term to the Hamiltonian only in the contact regions, 
the size of this poteritial is inversely proportional to the 
phase coherence lifetime ~ 4 .  For rapid decoherence, one 
needs a very large imaginary potential (short phase-breaking 
time) which gives rapid damping of the electron 
wavefunction within the contact (to cause the wave function 
of a realistic device to de-cohere over 1 nm in the contact 
requires zo - 0.01 ps, which provides a barrier of order 3 V). 
In essence, this leads i‘o bound states in the active region of 
the device, and the moimentum is quantized into values given 
approximately by 

nn k n = + ,  . 
L 

This leads to an uncertainty in the momentum of Ap FZ 

n h  nfL, but there is no energy spread within the active 
region, as the energy levels are quite sharp. Indeed, the 
simple presence of a momentum uncertainty does not imp& a 
spread in the energyjw that state. For our bound state, the 
energy level is quite sharp, and the uncertainty arises from 
the two discrete values that the momentum may take. 

One may sumniarize the above point with the 
observation that if the future small device is smaller than the 
coherence length, l4 :> L, then the required decoherence in 
the contacts effectively pins the coherence length to the 
actual length (e.g., 14 = L). This has been known for quite 
some time in the study of disordered mesoscopic devices [6]. 
Within the active region, then, there is little dephasing, and 
little broadening of the energy levels that may arise. 
Because the wave function is now set by the bound states of 
the active region, their extent is not directly related to the 
coherence length itself, but to the device length; for the 
above situation, we can actually find the uncertainty in 
position as 
7- 

L 6 

We will use this form below. 

3. The Two-Dimensional Electron Gas 

The problem, a s  discussed above, is that these 
treatments consider an isolated plane wave. In actual fact, 

the totality of the electron gas composes a range of plane 
waves, or momentum states. In order to describe the packet 
in real space, one must account for the contributions to the 
wave packet from all occupied plane wave states [7]. That 
is, the states that exist in momentum space are the Fourier 
components of the real-space wave packet. If we want to 
estimate the size of this wave packet, we must utilize all 
Fourier components, not just a select few. At low 
temperature in a 2D gas, all states up to the Fermi energy are 
occupied, and the Fermi wave vector is defined by the 
carrier density 

This means that, in the momentum representation, all states 
up to this value are occupied, or 

where uo is the Heavyside function. From this momentum 
space representation, we can now define a wave packet 
(centered at the origin) by taking the Fourier transform of 
(4), which leads to 

These wave functions may now be manipulated to show that 
(it must be remembered that k and r are really two- 
dimensional vectors in this calculation) 

AkF 1 

Jz kF 
Ap=- ,Ar=-  . 

Hence, the spatial extent of the real-space wave packet can 
be estimated as the full-width at half-maximum value, or 
twice the uncertainty in position, which leads to 

(7) 

The result (7) is the central result for the two-dimensional 
electron gas, and tells us that the spatial extent of the wave 
packet is quite small and related to the DeBroglie 
wavelength of the electron and not to its coherence length. 

One assuring feature of the value (7) for the size of the 
electron wave packet is that it is reduced as the electron 
density is increased. An increase of the density leads to an 
increase of kF, which reduces the value in (7). On the other 
hand, the total volume of space occupied by the electron is 
relatively constant, so that the reduction in the two- 
dimensional plane must be accompanied by an expansion in 
the normal plane, which moves the electrons to a higher 
level in the confinement potential of this third dimension. 
This means a higher Fermi energy, which is consistent with 
the increased density. A similar “squeezing” of the wave 
functions in two dimensions, resulting in elongation in the 
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third dimesion, has been discussed by Kubo et al. [8] for the 
wave functions of camers in a magnetic field. This also 
leads to the interesting result that the amount of area 
occupied by each electron in real space is approximately 
one-half of that given by the reciprocal of the electron 
density. We return to the effect of the other carriers on the 
wave packet below. 

4. Bound States 

In the case of bound states, the argument of Sec. 2 
seems to make more sense; that is, if the particle is confined 
within a region of size L, then certainly one might thlnk that 
the uncertainty (and therefore the electron size) is of this 
same order, since the particle is delocalized over this extent. 
In fact, this does not follow at all, as we must distinguish 
between the spatial extent of the wave function and the 
actual uncertainty in the electron’s position, which we 
connect to it’s size. We can demonstrate this with the bound 
states of Sec. 2 for (approximately) hard-wall confinement. 
The value of Ax in (2) is for a single pure state, while our 
dense electron gas has many occupied states. Hence, we 
must sum (Ax)2 over these states, which leads to 

where Y ( z )  is the digamma function, and N is the highest 
occupied state, corresponding to the Fermi energy. The 
derivative of the digamma function in (8) can be 
approximated for large N, and 

L2 
(Axy  w- , 

27c 2 N  
(9) 

so that the size of the electron in this structure is 
approximately (2/N)’/2Lln, This is considerably smaller than 
the Confinement region, if there are a large number of 
electrons in the active volume. 

It is obvious that the higher-lying wave functions, which 
contribute to the total wave function, are rather sharply 
peaked, which leads to electrons remaining at nearly precise 
points. It is this factor which leads to the small value of the 
uncertainty in position. Again, increasing the electron 
density raises the value of N, and this squeezes the electrons 
within the confinement region. 

5. The Nondegenerate 3D Semiconductor 

For nondegenerate semiconductors, the distribution of 
allowed momentum states is defined the Maxwell- 
Boltzmann distribution. This brings the temperature into the 
problem. As the temperature is increased, higher 
momentum states become occupied as the distribution 
spreads under the influence of the temperature. A wider 

momentum space distribution means a tighter distribution in 
real space for the electron wave packet. 

As previously, we consider the momentum space 
distribution as a description of the occupied plane wave 
states which contribute to the electron wave packet. The 
normalized momentum space distribution may then be 
defined to be 

q ( k )  = 2 ( 3 3 ’ 4  - exp [ -- a y  ] , 
where 

is the thermal DeBroglie wavelength [9]. 
Fourier transform this to obtain the real space wave packet 

We can now 

We then find that the effective size of the electron packet is 
given by 

6r - E A D  - O.61LD . (13) 

As expected, the size of the electron’s wave packet is 
inversely proportional to the temperature, through the 
thermal DeBroglie wavelength. 

One interesting aspect of this last result is that there is 
no density dependence in the thermal wavelength, and hence 
in the electron wave packet size. While this may seem 
strange at first sight, it is quite natural, as the non-degenerate 
limit is one of a dilute electron gas. When the density 
becomes sufficiently large that this limit is no longer 
appropriate, then the distribution changes character to that of 
the Fermi-Dirac distribution. In the latter situation, the 
density dependence re-appears through the importance of the 
Fermi wavelength, rather than the thermal wavelength. 
However, this should not be construed to mean that the other 
electrons have no effect on the size of the packet. 

6.  Discussion 

The core principles of the ensemble Monte Carlo 
simulation is the connection of each pseudo-particle to a 
“typical” electron, so that issues about the size of the 
electron become important in the simulation of ultrasmall 
devices with their corresponding high carrier densities. We 
can estimate the above sizes with some simple structures. 
For the two-dimensional electron gas in a Si MOSFET, or 
for that in a GaAs HEMT, the typical size is about 8 nm (this 
depends only upon the density and not the electron mass, 
and the density has been taken to be 10” cm-2). On the other 

86 



hand, the thermal DeBroglie wavelength at room 
temperature in Si is about 4.3 nm, and this will be reduced at 
the higher electron temperatures expected in active devices. 
While these are not sizes of concern for today’s 
semiconductor devices, they certainly are comparable to the 
sizes envisioned within the next decade. In real devices, 
however, there is also a consideration about the fact that the 
carrier density and the carrier temperature are not 
homogeneous quantities. Rather, these vary with position 
within the device. The results obtained here suggest that the 
effective “size” of the electron is given either by its 
temperature (in a non-degenerate situation) or its density (in 
a degenerate situation). Consequently, the situation arises in 
actual devices that the effective wave packet size for the 
electron actually changes with position throughout the 
device! Moreover, the interaction of this wave packet with 
a scattering “center,” such as e.g. an impurity, is also a 
nonlocal event-some parts of the wave packet are closer to 
the impurity than others. With barriers, the leading portion 
of the packet arrives, and begins interacting with the barrier, 
well before the trailing part of the packet [ 10- 121. 

The above considerations mean that the size of the 
electron wave packet is a result of the interactions of its 
environment. This environment includes not only the 
confining potentials, but also the effective confinement 
provided by the repulsive forces of the other particles, 
whether electrons or impurities. The shape and size of the 
wave packet is a balance between these environmental 
forces and the self-force provided by the diffusive nature of 
the Schrodinger equation. This latter is often evaluated from 
the shape of the wave packet by e.g. a generalized quantum 
potential [13]. Since the environment changes, through 
changes in the confining potentials and the local carrier 
densities, the shape , a d  size of the wave packet are 
quantities that vary throughout a real device. Moreover, the 
interaction with the distributed image near barriers means 
that the shape of the packet may well be significantly 
deformed at these points. The upshot of this is that any 
simulations of quantum effects must be carried out with the 
full many-electron Hamiltonian and the real environment 
must appear through self-consistent potentials. Moreover, 
the contacts, and importantly the transition regions where 
decoherence is expected to occw, become real parts of the 
device and must be considered with the entire quantum 
mechanical problem. 

This means that simulations such as Monte Carlo 
techniques will have to deal with both the finite size of the 
electron, its distributed and deformable shape, as well as the 
actual phase of the electron on its trajectory. Indeed, the 
previous success of Monte Carlo suggests that one might 
hope to find a trajectory-based Monte Carlo, non- 
deterministic picture far the Schrodinger equation andor the 
density-matrix Liouvillle equation i f  these problems are 
overcome. Even so, the nonlocal nature of quantum 
mechanics provides hirther complications, and approaches 
such as those of the Wigner function offer some hope 

[14,15]. However, the clear point is that it will no longer be 
adequate to consider the electron as a point particle in these 
future device simulations, and new approaches to kinetic 
pictures for transport are needed [ 11. 
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