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1. Introduction 
The intraband relaxation process is one of the most 

important mechanisms in basic optical properties of semi- 
conductor lasers. By interacting with other particles such 
as phonons, photons and plasmons, a phase of electron 
dipole is destroyed, which results in spectral broaden- 
ing in the emitted lightwave. So far, such a spectral 
broadening effect hat; often been taken into account by 
using a Lorentzian function with a phenomenological re- 
laxation time approximation in the density matrix the- 
ory [l]. However, ii, was pointed out that the optical 
gain spectra calculated with the Lorentzian function devi- 
ate from the experimental data, especially, an anomalous 
absorption region appears at photon energies below the 
band-gap [a]-[5]. Then, Yamanishi and Lee [2] and Asada 
[3] have assumed that the intraband relaxation process is 
not Markovian, and derived the non-Markovian spectral 
broadening function from the microscopic Hamiltonians. 
Then, they have replaced the Lorentzian broadening func- 
tion in the usual density matrix theory by it. However, 
this replacement has not been proved to be correct yet 
[4]. As an alternative non-Markovian theory of intraband 
relaxation, Tomita and Suzuki [4] and Ahn [5] derived a 
new density matrix equation from the microscopic inter- 
action Hamiltonian including carrier scattering terms. In 
their theory, the intraband relaxation effect is expressed 
by Hamiltonian autocorrelation functions. However, un- 
fortunately, since the,y approximated the Hamiltonian au- 
tocorrelation function by the simple Gaussian function 
with a constant correlation time, the gain spectra greatly 
depend on the unceiitain correlation time in the actual 
evaluation. 

In this paper, we study a microscopic derivation 
of spectral broadening function in semiconductor lasers 
based upon the noriequilibrium Green’s function tech- 
nique [6,7]. In this approach, various scattering phenom- 
ena such as electron--electron, electron-phonon, electron- 
impurity interactionv are incorporated in terms of self- 
energy functions. I11 semiconductor lasers, the carrier- 
carrier (C-C) scattering and the LO-phonon scattering 

are considered as dominant carrier relaxation effects. In 
particular, the influence of the higher-order many-body 
effects, which are called as first vertex corrections, is in- 
vestigated in detail. 

2. Quantum Kinetic Theory of Semicon- 
ductor Laser 
Dyson Equations 

To understand the carrier-photon dynamics in the 
semiconductor gain materials, we have to consider the 
fact that the electron-hole plasma properties are strongly 
influenced by the many-body Coulomb effects, the cou- 
pling to light field, and the interaction with crystal lattice. 
By using the standard functional derivative technique [8] , 
the following Dyson equations of carriers, photons and 
plasmons are derived. 

cj2 [G&(L, 2) -&(L, 2)]Gcb(2, 1’) = bd(L-1’ ) , (1)  
e = q b  

where the compact notation of space time arguments 
- 1 = {rl , t l}  is used and the underlined time arguments 
are defined on the generalized Keldysh time contour [8].  
G(C), D ( P )  and Vs(p) are the Green’s functions (the self- 
energies) for carriers, photons and plasmons, respectively, 
where a, b = e(electron), h(ho1e). In addition, the sub- 
script “0” denotes the free Green’s function describing the 
motion of the noninteracting particles. However, Go for 
noninteracting carriers are defined under the influence of 
the averaged Hartree and vector potential. The phonon’s 
Dyson equation is omitted because the phonon system is 
assumed to be in equilibrium. 

All interaction processes are included in the self en- 
ergy functions, which can be approximated in a system- 
atic way by using the functional derivative technique. In- 
troducing the first vertex approximation in the infinite 
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hierarchy of the self energy functions [6], we obtain 

C?u(l, 2) =ifi~oIjua12[Gaa(l,2)0(2,1) + i k 2  d3d4 J 
x Gaa (1,S)Gaa (3,4)Guu (4,2)0(4, I)VS (2,3)1 , (4) 

Cyu(1,2) =ihe2[Guu(1,2)Vs((2,1) +&e2 dad4 J 
~ G u a ( l ,  3)Guu(3,4)Guu(4,2)K(4, I>Vs(2,3)], (5) 

for the photon ( D )  and plasmon ( V )  contribution to the 
carrier self-energy E, where ja ,  denotes the interband 
current density matrix element. a means hole when a 
indicates electron, and vice versa. Similarly, the photon 
self-energy, P = P e h  + P h e ,  is given by 

Puz(1, 2) = - i f i ~ o  b U a  I2[Gaa(I, 2)Guu(2, 1) +ihe2 d3d4 J 
xGaa(L, 3)Gzz(3,2)G,,(2,3)Gau(3,L)K (4, a)]. (6) 

Here, the first term of these equations is called as the 
random phase approximation (RPA) contribution, while 
the second term the first vertex correction through the 
Coulomb interaction. The RPA includes the exchange 
energy and the partial correlation energy, while the first 
vertex terms represent the higher-order correlation ener- 
gies neglected in RPA [9]. Here note that the plasmon 
Green’s function Vs governed by its own equation of mo- 
tion (3) is approximated by the screened Coulomb poten- 
tial by introducing the quasistatic plasmon pole approxi- 
mation [6] where the plasmon self-energy, p = pee + phh , 
is represented within RPA as 

P a u ( L 2 )  21 -i~e2Guu(l,2)Gau(2,1). (7) 

Further, the phonon contribution (d)  to  the carrier self- 
energy is also approximated within RPA as 

C$&, 2) i f i e2Gau(I ,  2)d(2, L), (8) 
where d is the phonon Green’s function in equilibrium [7]. 

Optical Gain 
In this paper, since we focus on the gain properties 

before lasing, the photon contribution to the carrier self- 
energy will be neglected, and then C = E” + E d .  The 
optical gain is given by the imaginary part of the retarded 
photon self-energy. After decomposing the matrix photon 
self-energy according to ref. 8 on the Keldysh contour 
and then Fourier transforming the retarded self-energy 
with respect to  ( T I  - ~ Z , t l  - t 2 ) ,  we obtain the following 
optical gain rate. 

x [fe(k) + fh(k) - 11, (9) 
where w(k, R)  is the Coulomb enhancement function ex- 
pressed by 

w(k,S1) = 1 + he2/-/gV:(k d3 k‘ - k’) {Aee(k’,w’) 
(2r)3 

xRe [Gkh(k’,w’ - L?)] [l - 2fe(k’)] 

-Re [G:,(k’, w’)] Ahh(k’, w’ - R) [l - 2fh(k’)]}, (10) 

where the second term represented in the integral form 
denotes the first vertex corrections, which leads to the 
Coulomb enhancement effects in the laser gain spectra. 
Here w and R indicate the frequency of carriers and pho- 
tons, respectively. L,h(k, R) is the photon spectral shape 
function defined by 

In the derivations of these equations, we have used the 
relation l jUal2 = ( e 2 / 2 m ; ) l M l 2  with the momentum tran- 
sition matrix element M ,  and a carrier quasiparticle ap- 
proximation (Kadanoff-Baym approximation) given by 

G,<,(k, W )  = iAee(klw)fe(k)l (12) 

where A,,(k, u) is the intraband carrier spectral function 
and fu(k) is the carrier distribution function. The intra- 
band spectral function is generally defined as the imagi- 
nary part of the retarded Green’s function as 

(13) 
1 

Aaa(k,w) = -21m 
w - wg - C‘,,(k, w )  ’ 

where wg  denotes the free carrier’s frequency. The carrier 
spectral function (13) represents the energy-momentum 
dispersion relation of interacting carriers. For noninter- 
acting carriers, eq. (13) is simply written by A,,(k, u) = 
27rqw - WC). 

Carrier Retarded Self-Energy 
In this section, we present the carrier retarded self- 

energies to  evaluate the photon spectral function. First, 
the self-energy due to the C-C scattering is derived 

where 7 is infinitesimal and 

Here, the first and second terms on the right-hand - 
of eq. (14) denote the intraband and interband Coulomb 
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interactions within RIPA, respectively, and the third line 
the first vertex corrections. It should be noticed that 
the first vertex corrections probably cancel out the RPA 
contributions, because their signs are opposite. Next, the 
self-energy due to  the LO-phonon scattering is derived by 
using the screened ph’mon Green’s function as 

where the LO-phonon number and frequency are assumed 
to  be constant and given by NLO and W L O ,  respectively, 
and K is the screening, wavenumber. Here, we emphasize 
that the energy dependence of the carrier self-energies is 
exactly included in eqs. (14) and (17). 

3. Simulated Results 
In all calculations, the lattice-temperature is 300K 

and the carrier density 3 x 1018cm-3. Fig. 1 shows the 
photon spectral shape functions at band edge ( I C  = 0) 
computed for bulk GaAs semiconductor lasers, where the 
C-C scattering and the LO-phonon scattering contribu- 
tions are plotted sepaxately in (a) and (b), respectively. 
For reference, the result within the RPA is also plotted 
in Fig. 1 (a). First, since the first vertex corrections can- 
cel out the RPA contributions, the broadening function is 
modified to be narrower than that of RPA as shown in Fig. 
1 (a). In addition, the shape function is slightly asym- 
metric across the band-gap E, = 1.424eV. Next, Fig.1 
(b) reveals a rather complicated and asymmetric shape 
function with the phonon side-band peaks at  the energies 
E , k h w ~ o .  By combining the results of Fig. 1 (a) and (b), 
the total photon spectral shape function is obtained as 
shown in Fig. 2, where the curves within the RPA in the 
C-C scattering and the Lorentzian function ( T ~ ~  = 0.lps) 
are also plotted. The phonon side-band peaks are still ob- 
served in the solid and the dashed lines. Here, note that 
a t  the energy region below the band-gap, the Lorentzian 
function converges quite slowly, which leads to an anoma- 
lous absorption below the band-gap. 

Fig. 3 shows the computed energy-momentum dia- 
gram of the photon spectral shape function. The dark 
region follows the parabolic dispersion curve given by 
the reduced effective mass of electrons and holes, and 
the extent of broadening is represented by shading. It is 
found that the spectral broadening depends on the carrier 
wavenumber so that the broadening becomes narrower as 
the wavenumber increases. This is due to the fact that 
the higher velocity carriers are less scattered compared 
with the lower velocity carriers. By using the data of Fig. 
3,  the optical gain s p d r a  are evaluated as shown in Fig. 
4. First, the peak gain is increased from that of RPA 
by including the first vertex correction in the C;-C scat- 
tering. Next, the interband Coulomb enhancement (CE) 
effects, which comes from the first vertex contributions 

, ‘ ‘ ‘ “ . ‘ j  

h -carrier-carrier RPA+lst vertex) : - 10’ -----carrier-carrier [RpA) 
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Figure 1: Photon spectral shape functions at band edge 
( k 0 )  with (a) carrier-carrier scattering and (b) carrier- 
LO phonon scattering. 
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LO-Phonon + C-C (RPA) 
Lorentzian ( T ,n=O.lps) 
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Figure 2: Total photon spectral shape function at IC=O. 

in eq. ( l o ) ,  causes the peak gain to further increase, 
because the interband Coulomb attraction of electrons 
and holes leads to the enhancement of the optical transi- 
tion probabilities. The above results mean that the first 
vertex corrections significantly influence the gain proper- 
ties of semiconductor lasers operating in the high density 
regime. Here, we notice that the gain curve estimated by 
the Lorentzian function exhibits an unreasonable negative 
gain region below the band-gap. 

Finally, our results are compared with the quasi- 
particle energy approximation [6], where the energy de- 
pendence of the carrier self-energy CT,,(k,w) is approx- 
imated as C‘,,(k) by using the quasiparticle relation of 
w = ut(= tzk2/2m,). Fig. 5 shows the comparison be- 
tween our result and the quasiparticle energy approxima- 
tion for (a) the photon spectral shape functions at IC = 0 
and (b) the gain curve. In the quasiparticle energy ap- 
proximation, the damping constant yaa(k) = -ImC;,(k) 
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Figure 3: Energy-momentum diagram of photon spectral 
shape function. 

depends only upon the carrier’s wavenumber k and not 
upon the energy w .  As a result, the spectral shape func- 
tion becomes symmetric across the band-gap as shown in 
Fig. 5 (a). Due to the symmetric broad spectral func- 
tion, the gain curve becomes broader and decreases in 
the quasiparticle energy approximation. The above re- 
sults mean that the quasiparticle energy approximation 
might underestimate the optical gain properties of semi- 
conductor lasers. 

1.40 1.45 1.50 
Photon Energy (eV) 

Figure 4: Optical gain spectra. 

4. Conclusion 
In this paper, we have studied a microscopic deriva- 

tion of optical gain spectrum in semiconductor lasers. 
The carrier-carrier and the carrier-LO phonon inter- 
actions are considered based upon the nonequilibrium 
Green’s function technique. It is found that the first ver- 
tex corrections in the carrier-carrier scattering and the in- 
terband Coulomb enhancement effects increase the laser 
gain spectra. Further, we have pointed out that the quasi- 
particle energy approximation might underestimate the 
semiconductor laser gain properties. 

-Our result 
-----Quasipafiicle energy approx. 
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Figure 5: Comparison between our result and quasipar- 
ticle energy approximation for (a) photon spectral shape 
functions at t = O  and (b) optical gain spectra. 

References 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

For example, M. Yamada and Y. Suematsu: J .  Appl. 
Phys. 52 (1981) 2653; M. Asada and Y. Suematsu: 
IEEE J .  Quantum Electron. QE-21 (1985) 434. 

M. Yamanishi and Y. Lee: IEEE J.  Quantum Elec- 
tron. QE-23 (1987) 367. 

M. Asada: IEEE J .  Quantum Electron. QE-25 
(1989) 2019. 

A. Tomita and A. Suzuki: IEEE J .  Quantum Elec- 
tron. QE-27 (1991) 1630. 

D. Ahn: IEEE J .  Quantum Electron. QE-32 (1996) 
960. 

S. W. Kock, Microscopic Theory of Semiconductors: 
Quantum Kznetics, Confinement and Lasers (World 
Scientific, Singapore, 1995). 

H. Tsuchiya and T. Miyoshi: J .  Appl. Phys. 83 
(1998) 2574. 

D. F. DuBois, Lectures in Theoretical Physics, edited 
by W. E. Brittin, A. 0. Barut (Gordon and Breach, 
New York, 1967). 

H. Haug and S. W. Koch, Quantum Theory of the 
Optical and Electronic Pro pert ies of Semi conductors 
(World Scientific, Hong Kong, 1993). 

76 


