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1. Introduction 
A novel three-dimensional computational proce- 

dure is presented for the determination of the self- 
consistent electronic structure in the electrostatic 
field due to the nuclei. The model includes an eigen- 
value problem for Schrodinger’s equation coupled 
with Poisson’s equation for the electrostatic poten- 
tial. The solution is expanded in Fourier plane waves 
#k(x) in a manner similar to that utilized in the 
somewhat related Car-Parrinello method [ti]. These 
waves are characterized by the wave vector k and 
the equations are approximated by a pseudospectral 
projection that employs real space collocation and 
the Fast Fourier Transform (FFT). 

2. Self-Consistent Field Approximation 
Due to electron-electron interactions 

Schrodinger’s equation for a many electron sys- 
tem is not separable and does not facilitate a single 
electron description. Approximation of the system 
Hamiltonian by a sum of terms, each dependent on 
the coordinates of a single electron only, provides 
then separability of Schrodinger’s equations and the 
ability to describe electrons in the system one at a 
time. The many electron SchrSdinger equation is 
reduced to an equation for many single electrons 
by the well known Self-Consistent Field Approxi- 
mation (SCF). This procedure provides us for the 
description of the steady state with the solution 
for many single electron eigenstates of Schrodinger’s 
equation. In the latter the potential energy in the 
Hamiltonian is provided by an electrostatic part de- 
termined by the solution of Poisson’s equation for 
the electrostatic potential plus an electron density 
dependent exchange-correlation term. Approxima- 
tion of the many electron system by the SCF then 
amounts to self-consistent solution of this coupled 
system of equations. The inclusion of proper anti- 
symmetrization of the many-electron wave-function, 
provides the Hartree-Fock equations. This approxi- 
maiton includes as additional potential energy terms 

both an exchange and a correlation term which is 
dependens on the electron density. The many elec- 
tron system is then described as follows: Poisson’s 
equation coupled with an eigenvalue problem for 
Schrodinger’s equation 

The potential V in Schrodinger’s equation is given by 
V = -e4+VZ,(n). Here VZc(n) is the local exchange- 
correlation potential which depends on the electron 
density n [7]. For problem size N (> K )  the best 
possible complexity equals the solution size = K x N .  
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Fig. 1 Quantum Mechanical Electron Structure 
Simulation using SCF. 

3. Pseudo-Spectral SCF 
Let k indicate the wave-vector with Euclidean 

length I C .  Then, in pseudo-spectral space, Poisson’s 
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equation (Ker = comtants) can be represented as: 

1 
4fJi = ,okaPi 

The symmetry of the Hamiltonian in 
Schrodinger’s equatiion (1) indicates that the en- 
ergy eigenstates will be real. The Fourier trans- 
forms that figure in the pseudospectral projection 
are indicated by the orthogonal transformation Q 
for the forward FFT with inverse QT for the back- 
ward transformation. In spectral space this provides 
for Schrodinger’s equation the representation: 

As usual, in this formula li is the reduced Planck’s 
constant and m is the electron mass. The symme- 
try of the Schrodinger Hamiltonian remains evident 
after Fourier transformation to  spectral space. This 
eigenvalue problem for SchrSdinger ’s equation is dis- 
cretized by truncation of the Fourier series expansion 
of the solution at a suitable maximal kinetic energy 

In a typical siniulation the total sought after 
number of eigenstates, K ,  is much smaller than the 
total number of plane waves N = n,n,n,. With 
a = z:, y, z, the Fourier transform restricts n, to  val- 
ues n, = 2‘0 and for periodic problems of length La 
in the a-direction the wave numbers k, = ej,. 

Depending on the maximal energy resolution, 
the number of plane waves N can exceed the num- 
ber of electron states K by a factor of 100 or more. 
These relevant eigenstates are located at the low end 
of the energy spectrum and their distribution de- 
pends strongly on the configuration of the atomic 
nuclei. Degeneraciles of m (FZ 10, say) electron 
states at one energy level are likely to be present 
in three-dimensional models. The eigenvalue solver 
was, therefore, designed to  be sufficiently robust that 
it can accurately resolve the energy spectrum also if 
the energy states are highly concentrated in certain 
energy ranges. 

Kmax lk1kax/2m. 

+ bound states 4- unbound states - 
Lower 

end 

Fig. 2 Typical eigenvalue distribution 

The eigenvalue solver operates by the generation 
a set of vectors that may be expected to  have large 
components in the direction of the sought subspace. 
Next, the eigenvalue problem is projected onto this 
set of vectors and the much smaller dimensional pro- 
jected problem is s’olved by Arnoldi’s method [l]. 
The explicit orthogonalization of eigenvectors that 

is included in Arnoldi’s method then provides for 
the orthogonality that is hard to  realize otherwise 
within degenerate subspaces. The algorithm is de- 
signed such that the dimensionality k of the pro- 
jected problem is adjusted locally in response to the 
observed eigenvalue concentration. In this manner 
costly global orthogonalization is circumvented and 
replaced by an adaptive algorithm. 
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Fig. 3 Eigenvalue solver 

Selection of desired ranges in the energy spec- 
trum of the Hamiltonian is realized by the inver- 
sion of a quadratic expression of the Hamiltonian. 
The inversion here is implemented employing a Pre- 
conditioned Conjugate Gradient algorithm (PCG) . 
For this particular method it can be shown that the 
iteration number is independent of the number of 
plane waves that is employed in the approximation. 

4. Resolution of the Nuclei 
The only singularities in the atomic SCF are due 

to  the nuclei. In Poisson’s equation the nuclei intro- 
duce point charge singularities. Because the Fourier 
expansion of these point charge singularities is con- 
stant in spectral space, they present an obstacle to 
the realization of the potentially rapid convergence 
features of the Fourier expansion. Therefore, Fourier 
expansion of the singular point-charge distributions 
of the nuclei is circumvented. Instead, in Poisson’s 
equation for the electrostatic potential for the nu- 
clei are substituted smooth radial functions centered 
at the location of the nuclei. The potential corre- 
sponding to  the singular point charge of the nuclei 
minus the smoothed charge distributions is added to  
the potential computed from the regularized charge 
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distribution afterwards. This procedure facilitates 
in particular the accurate positioning of nuclei off 
the uniformly distributed meshpoints employed for 
collocation by the FFT. 

5. Iteration to Self-consistency 
Self-consistent solution of the Schrodinger- 

Poisson problem in the SCF is realized in an it- 
erative procedure of successive substitution for the 
eigenvalue problem for Schrodinger’s equation and 
Poisson’s equation for the electrostatic potential. 
The reliable convergence of this procedure to a self- 
consistent system solution is stabilized and acceler- 
ated by the application of a Jacobian-free version 
of Newton’s method implemented with the GMRES 
algorithm [6]. Because this non-linear GMRES (NL- 
GMR) algorithm implements a version of Newton’s 
method, a sufficiently accurate initial guess to the 
system solution must be provided. The efficacy of 
NLGMR in the context of systems of nonlinear el- 
liptic partial differential equations was demonstrated 
in [4]. It was successfully applied to two-dimensional 
Schrodinger-Poisson models in [2, 31. 

6. Computational Complexity 
The constant iteration number of the PCG in- 

version of the quadratic in the Hamiltonian indi- 
cates that the cost of the generation of a Krylov sub- 
space of size k for Arnoldi’s method equals a constant 
times the computational complexity of the applica- 
tion of the Hamiltonian operator times &. The in- 
ner products that realize the explicit orthogonaliza- 
tion of Arnoldi’s method in the k-dimensional sub- 
space contribute a computational complexity equal 
to the solution size, N ,  times k2/2.  once the pro- 
jection has been achieved the computational com- 
plexity of the projected eigenvalue solution is negligi- 
ble. The realization of self-consistency of the coupled 
Schrijdinger-Poisson is achieved in a fixed number of 
successive substitution iterations. The total com- 
putational complexity for the resolution of K eigen- 
states therefore comes out at  O[KNlog(N) + kKN]. 
This is essentially optimal if the superior approxima- 
tion properties of the Fourier expansion are taken 
into account. 

7. Natural Parallelizability 
The Arnoldi preconditioner amplifies a limited 

range of the energy spectrum selectively. Thus, the 
energy spectrum can be partitioned into a num- 
ber of segments, each being computed independently 
from the others in parallel (very coarse grain paral- 
lelism). Note that the communication cost is mini- 
mal: only at  the start (spreading the data) and the 
end (collecting the result) of each call to the eigen- 
value solver. Load imbalance is a possible problem. 

Therefore, load balancing techniques need to be em- 
ployed for further speedup. 

8. Significant Results 
A numerical code in which the described algo- 

rithms have been realized was applied to a number 
of simple molecules and solid state structures. Fig- 
ures of computed approximations are included for a 
simulation of methane (CH4) ,  benzene (C6H6) and 
diamond. 

, I 
I I 

I ! 

i I 
i I 

, 
\ 

i /  i ’  
\ I 

Fig. 4 2P orbital of methane. 
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Fig. 5 2P orbital of methane, degenerate with 
previous one. 
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Fig. 6 n-orbital aind electronic C - H orbitals in 
benzene. 

electronic eigenstate, plane Bloch wave. 

Fig. 7 Electron-orbital reflecting molecular 
structure in benzene. 

Fig. 8 Multiple cell diamond simulation. 65-th 
electronic eigenstate, (l,l,l) direction. 

9. Conclusions 
A novel computational procedure was presented 

for the solution of the Schrodinger-Poisson system 
in the SFC. The computational complexity of the 
method for the computation of K electronic eigen- 
states in a plane wave expansion with N compo- 
nents equals O [ K N  log(N) + K N ] .  The method was 
demonstrated in a collection of solid state and molec- 
ular structure simulations. 
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Fig. 9 Multiple cell diamond simulation. 71-st 
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