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1. Introduction 

Various effects are prevalent in the scaling of 
semiconductor devices. As the size of devices shmk, we 
find that there is a transition from classical to quantum 
phenomena. Similar in nature to the above, scaling also 
plays a vital role in magneto-transport fluctuations in 
ballistic dots as they are reduced in size. Experimental 
studies have revealed a high degree of periodicity in the 
conductance fluctuations, with only a few apparently 
harmonically related frequencies dominating the power 
spectra. Experimental data [l] appeared to suggest that the 
dominant frequency scales with A'", where A is the area of 
the dot. On the other hand, a semiclassical analysis [2] of 
periodic orbits suggests that the scaling should be with area. 
Numerical simulations have been performed on nominally 
square quantum dots in order to determine the magneto- 
transport and corresponding wave-functions [3], but these 
results were inconclusive Here, we pursue a different 
approach, based upon the energy spectra of the dots. The 
results obtained from these calculations allows us to probe 
issues regarding the scaling of the dominant frequency of 
the fluctuations. From our numerical analysis we attempt to 
resolve this issue by simulating dots of many different sizes 
using a quantum mechanical approach. 

The experimental studies, with which our numerical 
results are compared, have been performed on strongly 
confined, nominally square open quantum dots that were 
fabricated in GaAdAlGaAs heterojunction material where 
the gates were patterned using electron beam lithography. 
The devices varied in size from 0.3 pm to 1.8 pm, where the 
dot size was determined from Aharonov-Bohm oscillations 
at high fields. The input and output leads were placed at the 
top comers of the dot, leading to a configuration that was 
highly effective in trapping electrons due to the effects of 
beam collimation. In particular, the storage time for 
electrons is two orders of magnitude larger than the ballistic 
transit time across the devices which is in the range of 
several hundred pico-seconds. If we consider that electrons 
trapped in the dot cavity cool to an effective temperature of 
50 mK [4] along with duration of the storage time, the 
magnitude of the broadening of the discrete levels in the dot 
can be estimated at about 70 mK. This value is much 

smaller than the average level spacing for each of the dot 
sizes indicated above with the exception of the 1.8 pm dot. 
This indicates that the quantum mechanical nature of the 
transport in the dot becomes more resolved as the dot sizes 
are reduced in the experiment. 

At low magnetic fields (10.3 T), the experimental 
magneto-resistance was found to be dominated by dense and 
reproducible fluctuations. Regular fluctuations are found to 
be an intrinsic feature of both experiment [5] and simulation 
[6] as found from studies of magneto-resistance plotted as a 
function of cavity size and gate voltage. 

In the analysis of the data of the experiments as well as 
in earlier simulations, a Fourier analysis was performed on 
the conductance fluctuations to quantify the periodicities. In 
this paper, we use a different approach in trying to quantify 
the periodicities evident in the simulated conductance data. 
Specifically, we examine the conductance, G, as a function 
of both Fermi energy, E, and magnetic field, B, for several 
dot sizes corresponding to the experiments. As will become 
apparent, studying the three dimensional function G(E, B) 
provides a very graphical and unambigious way to see first 
hand the dominant periodicities that occur in the 
conductance. Morever, the periodicities that are obtained 
agree well with the experiments. 

2. Method of Calculation 

In order to obtain a better understanding of the behavior 
of the magneto-conductance fluctuations within square 
quantum dots we have carried out simulations of the 
quantum transport through the dot for dot sizes of 0.15- 
0.8pm. In order to conduct quantum transport calculations 
we lay each dot out on a mesh as displayed in Fig. 1. The 
general situation is one in which ideal quantum wires, which 
extend outward to fm, are connected to the quantum dot. 
This quantum mechanical problem can be solved by using 
an iterative matrix method [7] applied to the discretized 
version of the Schrodinger equation, obtained by keeping 
terms up to first order in the approximation of the derivative: 
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where WJ is a M-dimensional vector containing the 
amplitudes of the jth slice. The problem is solved on a 
square lattice of lattice constant a with the wires extending 
M lattice sites across in the x direction and the region of 
interest being broken dclwn into a series of slices along the y 
direction. In this equation, the H, matrices represent 
Hamiltonians for individual slices and the matrices Hjj., and 
Hjj+* give the inter-slice coupling. By approximating the 
derivative, the kinetic energy terms of Schrodinger’s 
equation get mapped anto a tight-binding model with t = 
- h ’/2m*d representing nearest neighbor hopping. The 
potential simply adds to the on site energies. 

i=O 
j=O j=N+1 

Fig. 1. The geometry of the quantum dot, and quantum point 
contacts, that are considered in this study. The grid represents the 
underlying mesh on whiclh the calculations are performed, though 
in practice the mesh is mulch finer. 

Equation (1) can lbe used to derive a transfer matrix 
which allows us to translate across the system and thus 
calculate the transmission coefficients which enter the 
Landauer-Biittiker formula to give the conductance. 
Transfer matrices howaver are notoriously unstable due to 
the exponentially growing and decaying contributions of 
evanescent modes. This difficulty can be overcome by 
performing some clever matrix manipulations and 
calculating the transmission by a iterative procedure rather 
than just multiplying transfer matrices together. The full 
details of this technique are given in ref. 7. This method in 
some ways is quite similar to the recursive Green’s function 
techniques [8] that typically are used to solve these 
problems, and a comparison has shown good agreement 
between the two methods. The amplitudes of the wave 
functions at specific values of x and y can be found easily by 
backward substitution after the iteration is performed. 

3. Conductance “Spectrum” and Scars 

As mentioned earlier, previous work focussed on taking 
Fourier transforms of tlhe conductance fluctuations resulting 
from the numerical simulations. The periodicity of the 
magnetoconductance was determined by identifying the 
dominant peaks of the power spectrum . 

Unfortunately, the Fourier method can yield results that 
are difficult to interpret. In particular, peaks can split or 
merge depending on the details of the analysis. Here we 
overcome this problem by plotting conductance as a 
function of both magnetic field, B, and Fermi energy, EF 
using the method described above to perform the 
calculations. Examination of such plots allows one to pick 
out periodicities that occur in the fluctuations directly and 
unambiguously. Fig. 2 (a) shows an example of a multi- 
dimensional plot for a 0.25 pm square dot. The conductance 
is indicated by the shading, with lighter shading 
corresponding to higher conductance. Note that the 
conductance is overlayed by resonance lines or striations. 
We have found that the positions of these resonance lines 
coincide closely with the spectrum of a closed dot of the 
same dimension [9-111. While close, this correspondence is 
not exact, as opening the dot to the external environment 
broadens the energy levels. We have found that the leads 
play a crucial role in determining which closed dot states 
survive to yield conductance resonances. Importantly, the 
fact that we get such striated patterns is strong evidence that 
the dot spectrum is still being resolved in these open dots. 

Many of the striations appear to be parallel to each 
other. The spacing of the parallel striations shown on the 
plot defines the periodicity of the fluctuations, which are 
essentially pinned by the underlying spectrum. Darker 
colored striations indicate conductance minimas while 
lighter ones indicate conductance maximas. The spacing of 
the striations should always be determined from adjacent 
minima or maxima. Many of these striations result in a 
wave function that is scarred. This scarring can be thought 
of as the quantum signature of trapped classical periodic 
orbits within the dot. An example of a scar corresponding to 
a diamond shaped orbit is shown in Fig. 2 (b). As the 
magnetic field or Fermi energy is varied to a position away 
from the striations the pattern of the wave function changes. 
Fig. 2 (c) shows a V-shaped pattern, which reflects the fact 
that the electrons are forced to enter the dot in a collimated 
and angled beam due to the quantization of the propagating 
modes in the lead [12]. It is this beam collimation that 
performs the spectral selection process noted above. Fig. 2 
(d) shows another diamond scar, occurring along the same 
striation as Fig. 2 (b). Fig. 2 (e) is a diamond scar that falls 
on an adjacent parallel striation. Thus, particularly striations 
can be associated with specific scarred states and their 
associated orbits. The occurrence of parallel striations 
scarred by the same orbit is clear evidence that the 
associated periodicity that is obtained can be ascribed to that 
orbit. The periodicity of the diamond scar is the same as 
that of the fluctuations seen in experiment [ 5 ] .  Hence, we 
use the periodicities of these striations to determine the 
magnetic frequencies for the dot. 
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reflected by figures 3 (b) and (c) can not be resolved in the 
smaller dot. 
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Fig. 3. (a) Conductance as a function of magnetic field and Fermi 
Energy for a 0.40 km square dot. @) Wave function 
corresponding to point b in (a), EF =0.145 eV, B=0.074 T. (c) 
Wave function corresponding to point c in (a), EF =0.145 eV, 
B=O. 182 T. 

Fig. 2. (a) G(E,B) for a 0.25 pm square dot. (b) Wave function 
corresponding to point b in (a), EF = 0.1470 eV and B=0.2029 T. 
(c) Wave function at point c in (a), EF =0.1460 eV, B=0.0786 T. 
(d) Wave function corresponding to point d, EF = 0.1453 eV, B = 

0.2209 T. (e) Wave function corresponding to point e, EF=O. 1422 
B=0.0993 T. 

Fig. 3 (a) shows another example of a multi- 
dimensional plot for a 0.4 pm square dot in this case. 
Included in Fig. 3 are two notable wavefunctions which 
confirms the idea that wave function scarring is associated 
with these striations. Importantly, as this is a larger dot, 
much more complicated orbits can be resolved in the scarred 
wave functions. As one would expect, there are many more 
striations occurring for this dot than in the smaller dot used 
in Fig. 2. However, as with the smaller dot, striations can 
occur in parallel groups. In this case, the “double diamond” 
scar shown in Fig. 3 (c) appears to yield the dominant 
periodicity for this larger dot. The diamond scar also occurs 
in this dot, but is significantly weaker and harder to fiid. It 
should be noted that the diamond has a similar periodicity to 
the double diamond in this particular dot. The orbits 

Analysis of several dot sizes has allowed us to generate 
data to compare with the experimental results. These data 
points have been included in Fig. 4. The theoretical points 
have been determined by the spacings of the parallel 
striations associated with a particular orbit (e.g. note the 
arrow in Fig. 2). It is clear from the figure that the multi- 
dimensional analysis agrees quite well with the Fourier 
analysis of the dominant frequency obtained in the 
experiments. As Fig. 4 indicates, there is a transition in 
behavior that occurs as the dot edge length is varied. In 
particular, there is a notable transition which occurs at -0.5 
pm indicating that below -0.5 pm, the periodic fluctuations 
scale with area, while above -0.5 ym we find the scaling is 
actually with length. Analysis of the three dimensional 
conductance plots provides some evidence of what may be 
occurring within the dot. Our results clearly show that 
striations evolve and change location in magnetic field and 
energy as the dot size is increased and new structure 
emerges on the conductance plots. Since the periodicity is 
determined from the spacing between the striations it 
follows that any loss of striations changes the periodicity of 
the fluctuations, and lowers the magnetic frequency. Orbits 
less dominant or nonresolvable in the smaller dots 
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eventually become more dominant as the dot sue is 
increased. 

1 oz 

€ r W 

E 

E u 10’ 

C 
(Y 
J 
U 

0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 1 2 

Dot Edge (rm) 

Fig. 4. The magnetic frequency as a function of the dot edge 
length for the numerical simulation data (open squares) obtained 
from the three-dimensional conductance plots mentioned in the text 
and the experimental data (solid circles). The numerical data was 
determined from the spacing of the striations on the conductance 
plots while the experimmtal data was found from the Fourier 
transforms of the magneloconductance fluctuations in the square 
dot. The lines are a g,uide to the eye and identify different 
dependencies. 

4. Conclusions 

Through the use of an iterative stabilized mode 
matching technique WI: have been able to generate three- 
dimensional plots of conductance as a hnction of magnetic 
field and Fermi energy. Analyzing such plots has allowed 
us to determine the periodicities of the magneto-conductance 
fluctuations in square quantum dots. Extremely good 
agreement is found between the data obtained from 
experiment and that calculated in the numerical simulations. 
Both the experiment and simulation provide evidence that 
there is a transition in the scaling behavior of the 
periodicities as the dot size is varied. We believe that this is 
a result of other less dominant orbits in smaller dots 
eventually becoming the more dominant ones in larger dots 
due to the increase in complexity of the G(E, B) plots. 
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