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We have performed spin density functional theory calculations to determine 
the electronic structure of lateral, GaAs - AZGaAs quantum dots. We have 
developed a highly efficient, quasi-adiabatic subband method which allows us 
to solve the Schrodinger equation for dot electron number N 2 200. We find 
that the direct Coulomb energy of putting two electrons into up and down spin 
of the sa,me spatial state at the Fermi surface, combined with the polarization 
dependent, exchange-correlation induced splitting of the spin levels, typically 
exceeds the average single particle level spacing and leads to spontaneous spin 
polarization of the dot. 

1. Introduction 
The calculations described here are motivated by re- 

cent experimental studies on tunneling transport through 
lateral semiconductor quantum dots [1,2]. Two significant 
conclusions of the experiments are that (1) fluctuations 
in the “charging energy” Ec for adding an electron to the 
dot, as a function of co-varying gate voltage V, and elec- 
tron number N great1.y exceed the fluctuations in the dot 
single particle level spizcings despite the predictions of the 
zeroth order ‘‘constant interaction” (CI) model that they 
should be equal; and (2) within the CI model analysis, 
spin degeneracy appe,%rs to  be absent from the effective 
single particle spectrum. 

The principle simplification of the CI model is to treat 
the Coulomb energy classically by introducing a device 
capacitance C which is, by hypothesis, independent of N 
and V,. Our calculations, within spin density functional 
theory (SDFT), of the electronic structure of lateral quan- 
tum dots allow the determination of the interacting dot- 
leads-gates system toi;al free energy F(N,V,) as a func- 
tion of N and V, and, in principle, single particle level 
occupancies (more practically, the temperature) , without 
employing phenomenological capacitances. 

The calculations reveal that the dot spectrum is com- 
posed of “scarred” wavefunctions, which are quasi-one di- 
mensional states that recapitulate unstable periodic or- 
bits in the classical confining potential, and “chaotic” 
wavefunctions, which more smoothly occupy the entire 
dot area. Fluctuations in the charging energy and po- 
larization proceed froim fluctuations in the direct and ex- 
change pairwise (screened) interaction between electrons 

in occupied levels. These interactions are dominated first 
by whether the two electrons are in spatially distinct 
states or are in the two spin states of a single spatial 
wavefunction. Second, the interactions depend strongly 
on whether the states are quasi-one dimensional scars or 
else dot-filling, chaotic states. 

2. Coulomb oscillations and the constant 
interaction model 

In recent experimental investigations [1,2], Coulomb 
oscillations in the low temperature, low source-drain volt- 
age tunneling conductance from 2D source, through the 
dot to 2D drain, as a function of a chosen gate voltage 
V,, are employed to study differences in the total interact- 
ing free energies F ( N ,  V,) of the dot-leads-gates system 
at neighboring values of N. The CI model for relating 
the gate voltage spacing of Coulomb oscillations and the 
charging energy derive from the following parameteriza- 
tion of the total energy of the dot 

where C is the dot self-capacitance, a is the so-called 
“lever arm” which is the ratio of the dot-gate capacitance 
to  the self-capacitance, and e: is the dot single particle 
spectrum. The capacitances and spectrum are assumed 
to  be independent of N and Vg. In eq. 1 we have used the 
symbol “E” for the energy within the CI model to dis- 
tinguish it from the total free energy which we calculate 
microscopically within SDFT. 
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Coulomb oscillations [3] occur a t  values of V, for 
which a degeneracy occurs in the total energy evaluated 
at two neighboring charge states, i.e. E ( N  + l ,Vg)  = 
E ( N ,  V,). The V, spacing between two successive oscilla- 
tions is simple to determine from eq. 1 

( 2 )  
e2 

eaAV, = + AN 

where AN 3 - E & ,  is the dot single particle level 
spacing at the Fermi surface. Consequently, assuming 
C is independent of N and V,, the observed spacings 
of Coulomb oscillations in the transport through the dot 
should reflect directly the single particle level spacings of 
the dot. These experimental studies involve dots with 
electron number anywhere from lo2 to  lo3. Thus precise 
predictions of the AN values, which depend in addition 
on crystal imperfections, random impurities, lithographic 
variations etc., appears infeasible. Statistical properties 
of eigenvalues and eigenfunctions of Hamiltonian systems, 
on the other hand, have been exhaustively investigated in 
the context of nuclear excitation energies under the for- 
malism of random matrix theory [4]. Treating the dot 
spectrum as such a random system, various predictions 
emerge for the statistical properties of an ensemble of 
eaAV, values, notably that the r.m.s. deviation of the 
distribution should go as - 0.52A, where A (without sub- 
scripts) is the mean level spacing. Furthermore, according 
to eq. 2, if spin degeneracy persists in the dot, an even- 
odd fluctuation in eaAV, should exist, reflecting the fact 
that every other value of AN should be zero. 

In contrast to  these predictions, the experiments have 
shown that fluctuations in gate voltage spacings are as 
much as a factor of five greater than the prediction and 
no even-odd asymmetry, within experimental error, can 
be discerned. 

3. Self-consistent calculation 
We have described the calculation of the electronic 

structure of lateral, GaAs - AlGaAs quantum dots, 
within the effective mass approximation and within the 
local density approximation to  density functional theory 
at length [5 ] .  In a more recent publication [6] we have 
discussed the modifications to  those calculations result- 
ing from spin dependent exchange-correlation potentials. 
To briefly recapitulate, Poisson’s equation is solved on a 
3D mesh which incorporates the (conduction) band offset 
between the GaAs and the AlGaAs of the heterostructure 
(material varies only in the z-direction, i.e. the growth di- 
rection). Boundary conditions on the surface are fixed by 
the gate pattern and the various applied gate voltages. 
The density is determined by a solution of Schrodinger’s 
equation in the dot and a Thomas Fermi approximation 
for the electrons in the leads. We employ an adiabatic 
treatment of the quantum description which takes advan- 
tage of the strong confinement of electrons to  the het- 
erostructure interface. That is, we solve Schrodinger’s 
equation in the z-direction at each point in the x-y plane, 

resulting in subband energies E ~ ( z ,  y) and wavefunctions 
SgY(z) which depend parametrically on x and y. Gener- 
ally we employ only the lowest subband (the structures 
which we model are all in the electric quantum limit) 
whose energy becomes an effective potential in the x-y 
plane. In comparison to solving a full three dimensional 
Schrodinger equation, which would require diagonaliza- 
tion of a sparse matrix of order N lo6, this method, com- 
bined with an eigenfunction expansion for the 2D states 
in the dot, is highly efficient. The solution of a dot state 
with N - 200 and one set of gate voltages typically con- 
sumes less than one hour on a DEC-ALPHA workstation. 

Calculation of the total free energy from the results of 
the self-consistent electronic structure requires that we in- 
clude the work provided by the power supplies connected 
to leads and gates [5] ,  as well as double counting and ex- 
change correlation terms in the energy. The free energy 
functional is thus 

where the (multiple) gate voltages are vi, the Kohn-Sham 
level energies are e p ,  with occupancies fp, the electrostatic 
potential is q!(r>, total conduction band electron density is 

ticle for up (down) spin, and v$’’(r) is the corresponding 
potential. Also, n+(r) is the density of positively charged 
donors, Qi and vi are the charge and voltage respectively 
of gate i. 

p(r), E,, t(J) (r) is the exchange-correlation energy per par- 

We define the dot charging energy as 

Ec E [-2F(N, Vg)+F(N+AN,  Vg)+F(N-AN,  V,)] /AN2 
(4) 

that is, the discrete second derivative of F with respect to 
N ,  at fixed V,. F ( N  f A N ,  V,) are computed by varying 
the dot Fermi energy, typically by f0.2Ry*, which results 
in a A N  close to  unity. Note that EC is defined at a fixed 
gate voltage and that here we are assuming that only a 
single gate voltage, V,, will vary. 

4. Results 
In this report we present results for a device which 

was used in reference [l]. As in the experiment, we sweep 
a gate voltage and allow N to change so that the dot 
remains in equilibrium with the leads. Thus V, and N 
change simultaneously. The gate pattern and a typical 
effective 2D potential is shown in the inset to Fig. 1. Re- 
sults for E c ( N )  and the spectrum near the Fermi surface, 
in the case where complete spin degeneracy is assumed, 
are also shown in Fig. 1. The most striking feature of 
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the results is the appearance of seemingly quasi-periodic 
peaks. The precise lociztion of these peaks depends on the 
gate voltages (other than the plunger) as shown in the dif- 
ference between curves (a) and (c). Curves (a) and (c) are 
pure Hartree, whereas curve (b) has identical gate volt- 
ages to (a) but also includes exchange-correlation. The 
lower panel of Fig. 1 slhows the self-consistent level struc- 
ture q , (N)  near EF,  ,as a function of N ,  corresponding 
to curve (a). The levels tend to cluster near EF and fluc- 
tuations in EC occur when a gap opens up at E F .  Level 
clustering at EF occuIs when it is energetically favorable 
to occupy two or more different spatial states as opposed 

tion between different spatial states. 
The fluctuations in EC indicated in Fig. 1 cause the 

distribution of Coulomb oscillation gate voltage spacings 
to  be significantly broader than the distribution of single 
particle level spacings, in agreement with experimental 
findings. 

source 

n,4J~  I I I I I I 1 1  I I 1 - 1 -  (a) ".*" 
n 
*h 0.0 

d -0.04 
4) 

80 loo 120 140 
Electron Number N 

Figure 1: Upper panel: Charging energy Ec as a func- 
tion of dot equilibrium electron number. Curves: (a) 
pure Hartree; (b) exchange-correlation included in local 
density approximation (LDA), same gate voltages as (a); 
(c) gate voltages other than plunger different to change 
shape. All results at T = 0.1 K .  Lower panel: Kohn- 
Sham energy levels vs. N near EF.  Total depth of Fermi 
sea N 1.2 Ry*. Fluctuations in Ec correspond to filling 
of second spin state of strong scars. Inset: gate pattern 
and typical self-consis tent effective 2D potential at 2DEG 
level. 

to occupying both spins of a single spatial state. This in 
turn results from the tendency, alluded to above, for the 
Coulomb self-interactiions to be greater than the interac- 
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Figure 2: Spectrum and polarization of quantum dot 
within SDF theory. Note that while spontaneous polar- 
ization due to  the unfavorable energy condition of double 
occupancy is to be expected, the tendency for the polar- 
ization to  periodically return to zero is unexpected. In 
the lower panel EF is the zero of energy. 

When spin is incorporated into the calculation, the 
clustering of levels a t  EF is replaced by spin splitting. In 
Fig. 2 we show the spectrum and the total dot polar- 
ization P as a function of N (again V, co-varies). The 
polarization is adjusted so as to always be positive. In 
reality the direction of the total spin will probably be de- 
termined by spin orbit coupling. Fig. 2 shows that P 
tends to increase from zero as an odd electron is added 
t o  a spin-degenerate state. For example, near N = 96 
if we take the dashed lines as the "up" spins, filling of 
49+ results in non-zero polarization which creates a dif- 
ference in the exchange energy experienced by up and 
down electrons and thereby causes all states to spin split. 
In addition, the charge distribution of 49+ is imperfectly 
screened at the Fermi surface. Therefore there is an added 
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direct Coulomb energy cost of filling 491, in comparison 
to 5 0 ~ .  Consequently the next state to go below EF is 
again a spin up state, which further increases the split- 
ting. Finally p = 51?, which is a strongly scarred state, 
fills. At this point the total dot polarization is maximum 
at 3 electrons. 

Generally, strongly scarred states tend to produce a 
gap in the spectrum since they have a highly inhomoge- 
neous spatial distribution. Empirically we find that the 
polarization tends to  peak at the filling of the first spin 
state of a scar and drops to zero when it is the last po- 
larized state to double fill. This occurs in Fig. 2 at, for 
example, N = 102. The p = 51t state undergoes anti- 
crossings at N M 100.5 and N M 101.4, and rejoins its 
spin partner at N = 102, where the spin polarization 
goes to zero and all states become spin degenerate. The 
pattern of polarization and depolarization, modulated by 
strongly scarred states, repeats throughout the range of 
N considered in the calculation. 

Clearly, the extent to which quantum dots will spin 
polarize depends upon the excess of diagonal Coulomb 
matrix elements over off diagonal elements (i.e. the cost 
to double occupy a state) as compared to the average bare 
level spacing A. Since A scales as L-2 and the Coulomb 
matrix elements scale as L-l,  one expects that for small 
dots spin polarization will be suppressed. This, however, 
does not take into account the regularity of the spec- 
trum of small dots (due to, for example, approximately 
bi-parabolic confinement) which can produce level degen- 
eracies. Also, while the typical Coulomb interaction goes 
as 1/L, it is not clear that the excess of diagonal (same 
spatial state) over off-diagonal interaction also scales in 
the same way, particularly insofar as screening is likely to  
play an important role. 

Note that it is by no means a priori obvious why the 
polarization should drop periodically to  zero. One might 
expect, given a typical average difference between diago- 
nal and off-diagonal Coulomb matrix elements and a typ- 
ical level spacing, that some roughly constant, non-zero 
polarization would be favored (say one or two electrons) 
and the plot of P vs. N would show random fluctuations 
up and down from that average value. That polarization 
periodically collapses, a fact which above we have related 
to the unusually large diagonal matrix element of scarred 
states, still requires, we believe, a more elaborate expla- 
nation. 

It is interesting to  speculate on the possibilities for 
directly observing the fluctuating spin polarization and 
also for devices which employ the spin polarization. It 
is well known that a spin-valve effect exists for transport 
across an interface between magnetic materials which dif- 
fer in their anisotropic pinnings [7]. However the direction 
of the magnetizations in this case are fixed by crystallo- 
graphic properties, whereas in the quantum dot case the 
strength of pinning of P to a given direction, such as 
the perpendicular to  the plane of the dot, is unknown. 
Nonetheless, if a polarized source of electrons can be gen- 

erated, it is plausible that a giant magnetoresistance effect 
will occur in response to the reversal of a weak magnetic 
field, which will flip the dot total spin. We are currently 
investigating further these questions of pinning. 
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