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A Wigner-function approach to the study of quantum transport in open systems in 
presence of phonon scattering is presented. Two important issues will be discussed 
in the paper: a) the existence of Wigner paths in phase space with many analogies 
with the semiclassical description of transport and b) how to deal with boundary 
conditions for the analysis of real open structures. Theoretical and computational 
results will be discussed in view of the application of this formalism to the simulation 
of transport in mesoscopic structures. 

1. Introduction 
Charge transport in mesoscopic structures must be 

theoretically studied by means of a quantum theory since 
typical dimensions involved are comparable with the elec- 
tron coherence length. The Wigner-function (WF) formal- 
ism (see, for example, [l-31) has been found particularly 
appropriate since it allows to use, within the rigorous ap- 
proach of quantum mechanics, familiar functions of po- 
sition and momenturn defined in phase space. This fact 
produces often a deeper physical insight into the quantum 
results with respect to other formalisms and leads to an 
easier interpretation of the semiclassical limit of quantum 
problems. Furthermore, as it will be discussed in this pa- 
per, it provides a suitable description of open systems in 
terms of initial/boundary conditions assigned inside the 
region of the device and at the boundary between device 
and environment. The WF is not always positive over its 
domain, and its arguments r and p are neither the eingen- 
values of the corresponding operators of quantum theory 
nor the conjugated variables of the semiclassical theory. 
This must be alway:, kept in mind in order to not push 
the semiclassical intuition too far within the framework 
of the quantum problem of interest. 

With this warning we shall discuss here how Wigner 
paths exist in phase space and exhibit many analogies 
with semiclassical paths. Moreover they can be used to 
solve the quantum evolution equation for the WF as semi- 
classical trajectories are used in numerical procedures to 
solve the Boltzmann transport equation. 

The paper is organized as follows: Sect. 2 presents the 
theoretical approach, in Sect. 3 the application of Wigner 
paths to boundary conditions will be discussed, Sect. 4 

contains a discussion on how Wigner paths can be used 
for a numerical solution of quantum transport problems. 
Some results for model structures are given. 
2. Wigner Paths 

It has been observed in the literature that the evolu- 
tion equation for the WF in absence of phonon interaction 
can be deduced from a “particle” dynamics in phase space 
described by modified Hamilton’s equations [4]. These 
allow to define “Wigner trajectories” that carry a value 
of the WF which is maintained during the time evolution 
along the trajectory in phase space. For quantum systems 
in stationary states Wigner trajectories are the “eqUi-WF” 
curves. 

A difficulty in the theory of Wigner trajectories is re- 
lated to the fact that Liouville theorem does not hold for 
the WF at singularities in the effective potential entering 
the WF evolution equation. At these points Wigner tra- 
jectories can be created or destroyed [4]. Furthermore 
the quantum force which appears in the effective Hamil- 
ton equations depends on the state of the system. Thus 
many Wigner trajectories are defined for a single initial 
phase-space point, each of them for any given quantum 
state of the system. It follows that the concept of Wigner 
trajectories is in practice of little utility, since it requires 
the a priori knowledge of the WF itself. 

An example for the above discussion is shown in Fig. 1, 
where the WF and Wigner trajectories are shown for the 
case of an electron inside a one-dimensional potential box. 
For this case Wigner trajectories are closed curves. Since 
from the Hamilton’s equations the “particle” velocity has 
the same direction as p , trajectories fully contained in the 
region p > 0 or p < 0 exhibit singular points correspond- 
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Fig. 1: Wigner function (upper part) and associated trajec- 
tories (lower part) for an electron in a one-dimensional po- 
tential box occupying the lowest energy state (MKS units). 

ing to the condition afwlap  = 0 which act as sinks or 
sources. 

Recently [6] the concept of Wigner paths (wP), based 
on the linearity of the evolution equation for the WF, 
has been introduced by the Authors. WPS overcome the 
theoretical problems discussed above and coincide with 
the classical trajectories for the cases of constant, linear, 
or quadratic potentials. When arbitrary potential pro- 
files and f or phonon scattering are introduced, WPS con- 
tain “ballistic flights” and “scattering events” in complete 
analogy with electron paths in semiclassical transport. 
This topic will be developed in the following. 
Free Paths 

When the potential V ( T )  in the electron Hamiltonian, 
corresponding to the force F ( T )  , is analytic and contains 
only terms up to second order in the position, it is well 
known [7] that the equation which describes the dynamics 
of the WF has the same form as the collision-free Boltz- 
mann equation: 

(a + ;. vr + F .  v, fw ( r , p , t )  = 0 .  ) (1) 

where m is the electron effective mass. Thus the motion 
of the WF corresponds to that of a classical distribution 
function of particles following classical dynamics. Thus. 
in such a case, WPS coincide with classical trajectories. 
Owing to the linearity of the dynamical equation, if the 
WF at the initial time t o  is regarded as the integral of 6- 
like contributions, each of these contributions maintains 
its “6” character in time and moves as a classical particle. 
Potential Scattering 

If we now assume that electrons experience, besides 
the force in Eq. (l), an arbitrary potential profile V ( r )  ~ 

in absence of phonon interaction, the following evolution 

Fig. 2: Example of WP relative to second order real (left) 
and virtual (right) emission terms of a phonon mode q . 

equation is obtained [3]: 

(a + f . v, + F . v, 1 f w ( r , p ,  t )  = 

= / d p ’ % v ( ~ , p ’ - p )  f w ( ~ , p ‘ , t ) .  (2) 

The transfer function Vw(r,  p) is the Weyl-Wigner trans- 
form of the potential V ( r )  . New path variables can now 
be introduced in the above equation: 

P eE 
m 2m 

T* = T ( t 0 )  = T - -(t - t o )  - -(t - 

p* = p(t0) = p + eE(t - t o )  , t* = t 1 (3) 

where for simplicity the case of a constant force -eE is 
considered. A successive integration over time, in analogy 
with what is done in order to obtain the integral form of 
the Boltzmann transport equation, provides the following 
integral equation: 

fW(Y,P,t) = fw (r(to),p(to),to) (4) 

+Jtdt’/dp‘Vw ( T ( ~ ’ ) , P ’  - ~ ( t ’ ) )  fw (~ ( t ’ ) , p ’ , t ‘ ) .  

An iterative substitution of the above equation into itself 
generates the various perturbative terms which constitute 
the Neumann expansion. Each term of the expansion is 
the sum (integral) of contributions, each determined by a 
set of values for the integration variables: the interaction 
times and the momentum transfers. This set of values de- 
fines a w ~ .  The number of “scattering events” included 
in a WP is equal to the perturbative order in the Neumann 
expansion. 

Between two scattering events the “particle” moves 
following the dynamics imposed by the external electric 
field E .  The WF at a given point of the phase space is 

t o  
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thus obtained as the sum of an infinite number of contri- 
butions, each carried by a WP and weighed by the transfer 
function Vw evaluated at the interaction vertices. 
Phonon Scattering 

If phonon scattering is considered, the definition of the 
WF must be generalized to describe the electron-phonon 
system as follows [5]: 

x (. + T ’ P ,  {nqI IP(t)l T - T ’ / 2 ,  {.;I, 7 (5) 
where p is the density operator of the electron-phonon 
system. For this case a procedure similar to the one dis- 
cussed in the previous section leads to the following evo- 
lution equation for the WF: 

where F ( q )  is a function that describes the electron cou- 
pling with phonon mode q , and haw ({nq}, {nh}) is 
the energy difference between the two indicated phonon 
states. The above equation shows that the contribution 
of a single vertex to the WF at the point ( r , p )  at time t 
is obtained through a path that connects r with the posi- 
tion T - p ( t  - t‘)/m . Furthermore, at the interaction time 
the momentum of the representative point is changed by 
half of the phonon momentum hq .  Again, substituting 
iteratively the above equation into itself we obtain the 
Neumann series with icerms at  arbitrary perturbative or- 
ders. The lowest peirturbative correction which has a 
classical analogue is associated to the second-order term 
and corresponds to one scattering event. As an example, 
typical paths associated with this term are represented 
in the diagrams contained in Fig. 2 .  They correspond to 
the semiclassical paths where hq/2  is transferred to the 
electron at  each vertex, while the dynamics between two 
vertices is a ballistic evolution with the corresponding 
momentum. If the process corresponds to a real transi- 
tion, the second momentum transfer adds to the first one, 
so that the total phonon momentum fiq is transferred to 
the electron. For virtual transitions, at the second vertex 
of the interaction half of the phonon momentum is given 
back to the phonon system, and the electron recovers its 
original p value at the beginning of the interaction. The 
solution is anyway inhenced by the virtual transitions, 
which are associated with out-scattering and polaronic 
effects. In the general case, when electrons, under the 
action of an external field E ,  move across a potential 

profile in presence of phonon scattering, the formulation 
presented above still holds and WPS include scattering 
vertices due to both phonons and the potential V ( r )  . 

3. Boundary Conditions 
The mathematical procedure described in the previ- 

ous sections contains a formal integration over time of the 
differential equation obtained after the substitution of the 
path variables introduced in Eq. (3). Let us now assume 
that the WF is known at time to  inside a closed region of 
phase space and at any time t > t o  on its boundary. In 
such a case, instead of performing the time integration 
from t o  to t , we can perform this integration from to t , 
where f = t o  in case the “ballistic path” that terminates 
in r at time t starts at t o  inside the domain of interest; in 
case the “ballistic path” crosses the boundary at a time 
t b  > t o  , then f = t b  . With this integration procedure and 
its iterative expansion it can be seen that the WF in r at 
t is given by a) all paths that start inside the region of in- 
terest at  time t o  and end in T at time t after an arbitrary 
number of scattering events without exiting this region, 
and b) all paths that enter the region of interest at any 
time after t o  and again suffer any number of interactions 
inside. This picture is again strictly analogous to the 
corresponding semiclassical transport picture. 

It must be noted that the WF of the electron-phonon 
system must be known at the boundary of the system of 
interest. For example, if electrons are interacting with 
phonons while entering the region of interest, this infor- 
mation must be contained in the boundary condition for 
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the WF. If the boundary is located at a metallic con- 
tact, there we know that electron-electron interaction is 
very effective in destroying the phase correlation of the 
electron wave function that constitutes the difference be- 
tween the WF and the semiclassical distribution function. 
In such a case the dynamics near the contact is difficult 
to account for. These problems are not new. They have 
all been faced (and only partially solved) in semiclassical 
transport theory. 

4. Monte Carlo Procedure 
The theory of WPS presented in the previous sections 

suggests to extend in a very natural way to the case of 
quantum transport the Weighed Monte Carlo procedure 
developed for semiclassical transport. In principle it pro- 
vides a rigorous solution of electron-transport problems 
inside any device accounting for coherent electron dy- 
namics and any interaction with the phonon gas, with 
potential profiles or scattering centers. The similarity 
with semiclassical transport also suggests the guiding 
criteria to extend the method to the problems investi- 
gated with traditional Monte Carlo procedures such as, 
e.g., electron-electron interaction and hot-phonon effects. 
Several considerations must be made at this point. 
a) WPS carry phase information that result in positive and 
negative contributions to the WF. A large cancellation 
of these terms requires a very large statistics compared 
to the semiclassical case. However the situation is not 
as bad as in pure path-integral approaches since, in the 
present case, all free paths that lead to the semiclassical 
trajectory between two scattering events are already ac- 
counted for. 
b) Energy conservation, as far as it is maintained in quan- 
tum theory, is guaranteed only by these cancellations. 
c) The transfer function Vw is well defined only if V ( T )  
has a single value at infinity. If two boundaries are kept 
at different potentials, this fact can be taken into account 
by a constant field acting on the free flights of the WPS. 

A Monte Carlo algorithm is now being implemented 
by the Authors on the lines indicated above. An inter- 
mediate procedure has already been implemented with a 
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Fig. 3: Electron current as a function of the applied bias 
for the case of a double-barrier potential profile. A compar- 
ison is shown between the results obtained using the ballis- 
tic WF (solid line) and the WF corrected by the effect of an 
electron-phonon scattering process (full circles) switched on 
50 fs before the “observation time”. 

somewhat different approach that makes use of scattering 
states. It treats the boundary conditions as previously 
shown, it evaluates the integrals over time numerically 
and the integral over the phonon modes through a Monte 
Carlo sampling. Results have been obtained at present up 
to the second perturbative order in the Neumann expan- 
sion, corresponding to one phonon emission or absorption. 
As an example, the I ( V )  characteristic of electrons mov- 
ing across a double-barrier potential profile in presence 
of a constant external electric field are shown in Fig. 3. 
Thermalizing contacts have been assumed as boundary 
condition. The results obtained for this case are consis- 
tent with data obtained for the same system from simpler 
quantum approaches [8]. 

5. Conclusions 
We have presented a general theoretical scheme for 

the solution of quantum electron transport in the frame- 
work of the WF approach which is based on the concept 
of Wigner path. The solution of a given problem can be 
interpreted as a sum of contributions, each carried by a 
Wigner path. A single Wigner path includes free flights 
and scattering vertices, in strict analogy with what hap- 
pens for a semiclassical trajectory. Within this framework 
we have shown that, for open systems, the theory natu- 
rally suggests the use of suitable boundary conditions to 
account for the interaction between the system of interest 
and the environment. 

A new Monte Carlo procedure is here proposed, based 
on the generation of Wigner paths, with many analogies 
with the semiclassical procedure, based on the genera- 
tion of classical trajectories. The method, in a prelimi- 
nary implementation, has been applied to calculate the 
current-voltage characteristics associated with electron 
quantum transport across model systems in presence of 
single phonon-scattering processes. 
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