
invited 

Trajectory-based Representations of Quantum Transport Theory and their 
Connection with Semi-classical Physics 

J. R. Barker 

Nanoelectronics Research Centre 
Department of Electronics and Electrical Engineering 

University of Glasgow, Glasgow G12 8QQ, Scotland, UK 
Tel: +44- 141 -330-5221, Fax:+44- 141 -330-6010 

E-mail: j barker @ elec . gla. ac . uk 

It is argued that rigorous trajectory formulations of quantum transport phenomena are feasible 
and that trajectory based simulation methods corresponding to Ensemble Monte Carlo methods 
or Hydrodynamic modelling are possible provided the unavoidable accompanying pilot fields 
are included within the formalism. 

1. Introduction 
Most semiconductor device simulation relies on the 

computation of semi-classical trajectories in space-time: 
Monte Carlo simulation of particle histories or 
hydrodynamic / drift diffusion simulation of mean particle 
flows. Quantum mechanics enters only in an emasculated 
form through the dynamics: E-p relations; or via the 
perturbative evaluation of scattering rates between pairs of 
momentum states { p, p’}. These schemes cannot describe 
localisation, bound states, tunnelling, interference or 
diffraction phenomena, non-local effects, single electronic 
phenomena, quantum fluctuations and state entanglement 
phenomena. Although powerful mathematical tools exist for 
solving some classes of full quantum transport problems - 
Green function, path integral, density matrix methods - they 
have little continuity with Monte Carlo or Hydrodynamic 
methods and indeed are essentially field-theoretic, not 
particle based. They ;ne impractical for full scale device 
modelling. It is often argued that the quantum mechanical 
“uncertainty” relations for position and momentum preclude 
specification of either a real space or phase space trajectory 
and because the underlying Schrodinger theory is a 
(complex) field theory there is no basis for an underlying 
particle (or hidden variable) description, except at the point 
of observation when cine is reluctantly forced to admit that 
energy, momentum, charge are transferred locally. 
Nevertheless, it remains the case that people speak of 
particle tracks, orbits and indeed trajectories when describing 
quantum phenomena subjectively. 

Experimental observations of apparent trajectories in 
cloud chambers, bubhle chambers, spark chambers can be 
well accounted for in i i  pure wave picture as artefacts of the 
interplay of the conservation of linear momentum with the 
repeated inelastic scattering of a probe field on multiple 
scattering centres as described by Mott [ 11 . The geometrical 
optics limit of quantum theory is well understood in fields 
such as electron beam optics. Virtual trajectories appear in 
the formulation of Feynman Path integrals. Contours in 
phase space occur for certain classes of Wigner distribution 
and its relatives but cannot correspond to real particle 
trajectories because thie formulation lacks compact support: 
the “trajectories” can occur in regions where the position 
probability density is zero. 

The question thus arises: is it at all possible to maintain 
a particle trajectory picture as the transition is made from 
semi-classical transport to full quantum transport? The aim 
of this paper is to maintain that the answer is yes, but at a 
price. Our optimism is based on the observation that 
quantum mechanics is not a pure field theory: at the point of 
measurement energy and momentum is absorbed 
discontinuously and locally, by a detector, not continuously 
and dispersed as might be expected from a pure field model. 
Moreover the number of effective degrees of freedom for a 
single quanton, with respect to energy, momentum and other 
dynamical variables is 3 (space) plus whatever internal 
degrees of freedom are relevant (spin for example), whereas 
a pure field theory has an infinite number of degrees of 
freedom. In this paper we shall review progress towards 
revealing a quantum trajectory picture and discuss the 
prospects for particle simulation methods in determining full 
quantum transport properties. In passing we shall allude to 
trajectory interpretations of subtle quantum effects such as 
the time of arrival problem, wave packet collapse, Quantum 
Zen0 effect and quantum measurement issues, all of which 
are crucial in achieving the goal of building deterministic 
quantum switches[2]. 

2. Trajectories from a classical field theory 
Let us begin with the non-linear partial differential 

equation of motion for a particular classical field - the action 
S(x,t) defined at field points (x,t} in space-time: 

(1) aS(x,t))/at + H(VS(x,t), x,t) = 0 

which is the Hamilton-Jacobi equation for a single particle 
and where H is a classical Hamiltonian. This is often 
converted quickly into a particle equation of motion by 
taking the gradient, identifying the form VS(r,t) as the 
momentum p of a particle at particle position { r,t}, in space- 
time and from the definitions of a drifted derivative and total 
differential obtaining an expression for the rate of change of 
momentum in terms of a local force. For specific classes of 
Hamiltonian such as H = (VS(~,t))~/2m + V(x), the resulting 
“particle” equation of motion can be solved to give a 
complete picture of the evolution of the particle position and 
velocity along a well-defined particle trajectory in space- 
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time. The field S(x,t) appears to have been eliminated in 
favour of a local particle picture which only samples a one- 
dimensional orbit in the three dimensional support of s. If all 
possible initial boundary conditions are considered the 
corresponding infinite bundle of particle trajectories cover 
the full support of S. 

A more instructive route is to adopt a geometric 
approach to equation (l), delaying any assumptions about 
the existence of particles. For brevity we assume a 
conservative Hamiltonian H(VS(x ,t), x ,t). The time- 
dependence of S may then factored into two components via 
the transformation S = W(x, P )  +S’(P,t) where the three 
components of P are the constants of integration PI = E, P2, 
P3 of (1). Equation (1) separates into: 

or by introducing the vector p by 

p = vs = aslax = awlax (3) 

Integration of (2a) yields (0 is a constant of integration) 

S’(P,t) = -Et + 0. 

Now introduce three surfaces defined by the vector X : 

x = asm (4a) 

where the components Xi are constants. Equations (4c) and 
(4d) describe two fixed sugaces SI and S2 in space. The two 
surfaces SI  and S 2  intersect in a fixed curve C given by the 
simultaneous solution of (4c) and (4d). Equation (4b) on the 
other hand describes a surface T which moves as a function 
of time t. The intersection of surface T with curve C locates 
a moving point D described by a vector position r= r (t) 
(Fig.la) If D is initiated at xo, to on the curve we may 
determine constants XI, X2 and X3 in terms of xo, to and the 
constants Pi by setting x = ~0 in (4b) to (4d). Consequently r 
evolves in time from an initial location r(b) = xo at t=b to 
reveal a trajectory along curve C (the orbit). By solving (4b - 
4d) for r = r(t, xo, P), we obtain the trajectory explicitly as a 
parametric form generated by the time variable. To obtain 
the velocity of point D along the trajectory we first use 
equation (2c) to derive 

a w a p  . dp + awax . dx = o ( 5 )  

which must also hold along the orbit C. Introducing p(t) as 
the parametric form for p at moving location D we obtain 

dpidt = - awar (8) 

subject to initial conditions r(b) = %, p(b) = po. where po is 
easily deduced from P. Equation (7) yields the velocity. 
The system point (r,p) follows a single valued path in phase 
space, but for surfaces which have non-Euclidean topology 
(for example self intersecting) the trajectory may re-cross a 
given point in space (figure eight orbits in planetary 
dynamics). 

We have thus obtained from the equation of a pure field 
a geometric construction of Hamilton‘s equations for a 
“particle” of momentum p located at D which evolves along 
a trajectory in space or in phase space. This derivation 
requires that the gradient X = aS/aP is a constant. By 
selecting all possible values for X and P we generate all 
possible solutions for S and equivalently all possible 
trajectories for D. The independence of the initial conditions 
ro and po lead to multi-valuedness in p = VS. Trajectories 
emanating from a family of initial locations in phase-space 
generate trajectories which cross in direct space (more 
properly configuration space). It is straightforward to show 
that the condition X = aSIi3P corresponds to the existence of 
a contact transformation used in Jacobi’s construction of 
dynamics. The contact transformation implies that the co- 
ordinates r ,  p are connected with the initial values at ro, po 
which are new constant co-ordinates generated by a contact 
transformation effected by W(r,P). 

Fig. 1: (a) Classical action field: unique trajectory 
(b) Quantum action field: multiple trajectories 

3. Quantum trajectories 
Consider now a simple conservative quantum 

Hamiltonian H = T(p) + V(x), where x and p are hermitian 
operators. For the moment let us specialise to T(p) = p2/2m. 
Choosing R(x,t) as the amplitude and S(x,t)/h as the phase of 
the wave function we may separate out real and imaginary 
parts of the Schrodinger equation determined by H to obtain 
a continuity equation and a Hamilton-Jacobi like equation. 

ap /at +V.{pVS)/m}= o (9) 

(10) -aslat = (VS)2/2m +v + vq 
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Here there are two equations for two pure fields R and S. VQ 
is the quantum potential introduced by Bohm[3]. VQ has a 
form that depends on the, form of T(p); here 

(1 1) VQ = -A2/(2m R )V2R 

Crucially to obtain backward equivalence to the 
Schrodinger equation we must also put in a constraint on the 
boundedness of S corresponding to the wave function being 
single-valued, defining as a closed curve in space: 

S=Smod  h, or p.dr=nh (12) 5, 
Suppose that R(x,t)., and hence the quantum potential, is 

known as a function of space and time, from say an exact 
solution to Schrodingers equation. The quantity S(x,t) then 
satisfies an effective ]Hamilton-Jacobi equation with an 
effective potential given by V + VQ. We may follow the 
reasoning of section 2 to deduce the existence of a “particle” 
moving classically and tdeterministicalZy, along a trajectory 
from some initial position and momentum (ro, po). The 
particle momentum is given by 

p = vs = asjar (13) 

Here, however, we cannot treat po as an independent 
boundary condition; instead the single-valuedness of the 
wave function implies the single-valuedness of V S , 
consequently the initial momentum at any starting point in 
space is given by 

The same wave functioin thus gives rise to an infinite family 
of non-touching, non-crossing trajectories in configuration 
space (see Fig. lb) corresponding to the set of initial moment 
described by the initial phase in (13). Thus a quantum state 
involves a delocalisation of the particle position in space. 
The theory is thus non-local. 

If we define a probability density P(x,k) for locating a 
particle in space at t(,, the continuity equation and the 
trajectory evolution equations allow us to derive P(x,t) at any 
later time. Experimentdly, we know that if an ensemble of 
identical states is probed to locate individual quanta they are 
located with probability density P(x,t) = R2(x,t). By making 
this choice for deciding on the initial random location in 
space and for consistency requiring that the initial momenta 
are given by equation (13) using the initial phase S(x,t), we 
may use the entire traj’ectory bundle to propagate the field 
V S  under guidance by the field R via a particle -field 
simulation. We have essentially re-derived Bohm’s version 
of quantum mechanics [3] where condition (13) appears as 
an additional postulate. 

The derivation again rests on the assumption X = dS/dP 
is a constant. But what is the authority for this? We have 
introduced the localisation of quanta to relate the wave 
function amplitude to the probability density for occupying a 

trajectory. The assumption X = aS/aP is equivalent to 
assuming the existence of a particle Hamiltonian with three 
degrees of freedom in which the position and momenta at 
one time are dependent on arbitrary initial conditions. We 
have additionally assumed that the evolution of R is known 
for all time and that S is known at some initial time. This 
initial condition appears to be in violation of the classical 
contact transformation and leads to curious properties for the 
trajectories. For example, the quantum trajectories in the 
entire bundle cannot touch or cross. a non-classical result. 
This implies a correlation between momentum and position. 

4. Simulation 
Either the field R or the field S must be known if the 

particle trajectories are to be computed. The trajectories are a 
geometric feature of the pilot fields. It is tempting to use 
Monte Carlo simulation to create the trajectories self- 
consistently and thus derive the fields R and S. The argument 
would be: (a) start with an initial set of N virtual particles 
distributed in space with a density given by R2(x, to) and 
each with a momentum po = VS(x, to). (b) This ensemble 
would be evolved over a short time At using the equation of 
motion for dpddt = F(ri)+ FQ(ri) where i denotes the ith 
particle. Here the quantum force FQ is derived from the 
gradient of the initial quantum potential. (c) The new particle 
density and hence R is calculated from the new positions or 
from the continuity equation. An updated quantum potential 
is obtained and the procedure repeated. By integrating the 
velocity field we might obtain S and thus the wave function 
would be recovered. Unfortunately, there are two particular 
problems: first, the continuity equation (which is trivially 
reflected in the continuity of the trajectories) maps the non- 
nodal regions of the pilot field R (where R # 0) into 
themselves along the trajectories: 

The quantum force is derived from p = R2, and it 
prevents particle trajectories crossing nodal lines. Thus this 
particle based or fluid based simulation cannot change the 
original nodal structure. Second, the phase condition (12) is 
automatically satisfied in the initial state and is secure whilst 
the nodal pattern is fixed. However in a full wave- 
mechanical treatment, the nodal pattern not only evolves but 
there are discontinuous changes in the phase number n 
possibly leading to changes in the current quantisation 
(appearing as a quantised vorticity). Either the full wave 
function must be computed at each time step (the trajectories 
are then trivially derived from Bohm’s theory) or either of 
the two fields R or S. It is easier to compute R. 

A possible scheme is to use the quantum Hamilton 
Jacobi equation (10) together with (1 1) to compute R at each 
time step, subject to field boundary conditions rather than 
particle boundary conditions. We thus solve: 

A2/(2m )V2R = Q(x,t) R (16) 

B = (as/& + (VS)2/2m +v) (17) 
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where Q is obtained from the trajectory dynamics by simple 
Monte Carlo. With this approach there is no need to impose 
an initial probability distribution (alternative views are in 
[4]); it may be derived from the stationary wave equation for 
R using initial values for as/& andVS. This scheme is quite 
useful for handling l-D particle in a box problems including 
the non-trivial adiabatic and non-adiabatic problems of a 
particle in a box with moving walls. It works very well when 
the spatial wave function is real. It describes evolving nodal 
patterns but in general it cannot pick up changes in quantised 
current coming from the phase condition. 

It is also feasible to use a complex quantum Hamilton 
Jacobi equation for the complex phase S’ = S -ihVp/2p: 

This equation preserves all the phase conditions and nodal 
properties and if solved with pure wave boundary conditions 
is equivalent to the Schrodinger equation. A virtual particle 
simulation may be possible provided the wave boundary 
conditions are suitable transformed. 

A deeper interpretation of Bohm’s picture [5]  suggests 
that the quantum Hamilton Jacobi equation is in fact an 
ensemble average over an underlying stochastic picture in 
which the trajectories are stochastic: akin to Brownian 
motion paths. The resulting re-formulation is similar to 
Nelson’s [6] stochastic version of quantum mechanics but it 
utilises the phase condition( 12) to derive the stochastic 
forces. There are similar problems in a self-consistent 
simulation of the random trajectories. 

Quantum hydrodynamics has similarities to the Bohm 
picture and encounters exactly the same problem of being 
unable to provide a self-consistent simulation of transport 
without a priori knowledge of the quantum state [7]. 

5. Arrival time on a trajectory 
If occupancy of a quantum trajectory is established the 

particle has a precise time of amval at any subsequent point 
on the orbit. Thus traversal times, a controversial problem in 
tunnelling theory are easily established. The mean traversal 
time T between two points is obtained by computing the time 
T(xl, x2; xo) for a particle initially on a trajectory at xo with 
probability density R2(xo) 

z = d3xT(x, ,x2;xo)R2 (xo) . 

Leavens [SI gives a precise description of the various 
tunnelling times on this basis. It should be noted however 
that in the stochastic picture [5,  61 the trajectory evolution is 
quite different and a different value for the traversal time T 
must be expected. No experimental tests exist at present. 

6. Information theory 
It is interesting to note that there is no requirement for 

“wave packet collapse” to be invoked in understanding the 

measurement problem if we adopt either the deterministic or 
stochastic Bohm picture. For example, if we calculate the R 
and S fields for inelastic scattering of an electron wave 
packet on an atom, the scattered wave contains wave packet 
components distributed in shells which recede apart at 
different velocities as time elapse. If the electron has an a 
priori probability Pi to be in the ith outgoing packet and is 
subsequently discovered there, it cannot evolve to join any 
other packet according to the trajectory model. From an 
information theoretic point of view we may then re- 
normalise R over this particular packet when assigning a 
new probability distribution for the particle. The remaining 
empty wave packets may be then ignored. 

7. Conclusions 
The existence of classical trajectories as unique 

geometric features of the classical action field has been 
emphasised. The quantum action field has a different 
property; it sustains a family of non-touching, single-valued 
trajectories (but not orbits) which correspond to the same 
quantum state. It is not possible to build a particle-only 
model or self-consistent quantum hydrodynamic model of 
quantum theory. This is because the pilot field S cannot be 
eliminated as in classical theory and induces instead a de- 
localisation of each classical trajectory. The pilot field R 
induces an information theoretic probability distribution over 
the trajectory family. In some cases, for example, when the 
circulation (12) is not quantised a self-consistent particle 
simulation may be constructed by a leap-frog method in 
which the R field and then the velocity field is computed 
using successive field and particle boundary conditions. The 
information theoretic interpretation of pilot field - trajectory 
models is sufficiently powerful to handle some problems 
associated with continuous measurement processes. In 
particular, the Quantum Zen0 effect is easily incorporated if 
we use the modified density-matrix formalism [9]. 
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