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ABSTRACT 

We present a model for investigating filamentary structures observed in laser-triggered 
photoswitches. Our model simulates electrons and holes in two-dimensional cylindrical (r-z) geometry, 
with realistic electron and hole mobilities and field dependent impact ionization. Because of the large 
range of spatial and temporal scales to be resolved, we are using an explicit approach with fast, direct 
solution of the field equation. A flux limiting scheme is employed to avoid the time-step constraint due to 
the short time for resistive relaxation in the high density filament. Self-consistent filament propagation 
with speeds greater than the carrier drift velocity are observed in agreement with experiments. 

L INTRODUCTION 

Laser-triggered solid-state switches operating at high fields have promising applications to fast 
pulse-power technology, to microwave generation, and may play an important role in impulse radar. 
Experiments with semi-insulating GaAs switches have shown exceptionally fast low-jitter operation in the 
high-gain regime, where the laser trigger energy is small compared to the switched electrical energy; see 
e.g. [1]. Connected with this efficient high-gain operation is the experimental observation of filamentary 
structures, which are suspected of carrying the bulk of the device current [2]. An understanding and 
characterization of these filaments is important for improving device performance and lifetime, and is the 
primary goal of our simulations. 

Our model simulates electrons and holes in two-dimensional cylindrical (r-z) geometry. The 
continuity equation for each species s, with density n5, is advanced in time with the particle flux 
expressed through a drift-diffusion type relation: 

-!£• = -?•{nsus)+2.as'\us'\ns', us=^-fisE 
dt s> e 

Realistic coefficients for mobility /J.S and impact ionization as are included, both non-linearly dependent 
on the electric field. For the time and space scales of interest, both diffusion and recombination are 
unimportant, but could be easily included. In fact, the physical diffusion would be small relative to 
numerical diffusion. The electrostatic field is found from the Poisson equation (in CGS units), 

V2<& = - — I ^ i f e , E = -VO 
e s 

where e is the crystal dielectric (assumed to be a constant), and the charge of a species is qs (-e and +e for 
electrons and holes respectively). 

Our strategy for numerical solution of this model is determined by the necessary time and space 
scales that must be resolved. Experimentally, these filaments are observed to have a radius on the order of 
tens of microns, thus we anticipate a typical cell size Ar=Az<\\im. The switches are typically one to 
several millimeters in dimension, hence our system sizes will be many hundreds of zones on a side and 
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total number of grid cells A^IO^-IO^. The relevant time scale to be resolved is the ionization time, 
At<(ua)'l=0.5 ps. Switching times are of the order of 100 ps -1 ns, so we can anticipate several thousand 
cycles necessary for a simulation. 

H. NUMERICAL IMPLEMENTATION 

Apart from accuracy, ie. properly resolving the phenomena of interest, there are stability restrictions 
on the time step, determined by the choice of numerical algorithms. The Courant limit on the continuity 
equation requires that the flow not transit a cell in less than one time step (similar arguments would lead 
to a time step restriction for explicit diffusion). For the spatial zoning typically employed in these 
simulations, however, neither of these conditions limits the time step beyond what is required for 
resolving the phenomena of interest. A more limiting constraint is due to the resistive relaxation time. A 
region of space charge tries to relax under the action of its self-consistent electrostatic field; if the time 
step is too large, the motion over-compensates generating an oppositely directed field of larger 
magnitude. The stability requirement for explicit differencing is that the resistive decay time be resolved. 

At < xr , Tr = 

s 
For intrinsic GaAs at 300 K 0z=5.3xl03 cm2/V-s), the resistive decay time is approximately 
Tr=(1300 s/cm"3)//ie. Because of nonlinear mobilities, At > %r may be acceptable due to nonlinear 
saturation of the unstable oscillations. However, in the high density, low-field region of the filament this 
limit can be a serious constraint. Typical carrier densities in the filament are found to be «=1017-
10*8 cm_3, and so the resistive decay time is very small, T,<10 fs. 

Typical semiconductor device simulation is concerned with steady state behavior and solution 
schemes use implicit methods, where all the terms on the right-hand side of the continuity equation are 
written at the advanced time. This requires the solution of large block matrix systems, which are iterated 
due to non-linearities in the equations. These methods are robust and efficient at finding final steady 
states, but excessively costly for our application. An alternative is to treat only the most troublesome term 
by using the advanced electric field to define the drift velocity; substituting into the Poisson equation 
determines the field equation for a non-iterative scheme. However, this non-separable field equation still 
precludes the use of very efficient rapid-elliptic-solvers, which are the preferred solution method because 
of the large system size and necessary number of cycles. 

We have implemented a flux limiting scheme which still allows use of a direct, rapid solver for the 
Poisson equation. The drift term is defined by limiting the velocity compared to a simple explicit 
definition, 

»J+1 = i£-A/V. 
f nnvn 

'S e (1 + A//Tr) 
n'^nl+AtlaV ns 

where superscripts denote time level and the primed density on the right hand side includes other terms 
advanced explicitly in time. In regions where the resistive decay time is well resolved (low density, low 
mobility), At«rr, the flux takes on its usual value. In regions where At»rr, (high density, high 
mobility) this flux limiting ensures that only enough density moves to shield out electric field 
fluctuations. 

Currently, spatial differencing of the transport is fully upwind; with the diffusion neglected, this is 
equivalent to Scharfetter-Gummel [3] differencing in the (appropriate) high field limit. The problem 
domain is restricted to be "rectangular", ie. 0<z<Zmax and O^^max- The zoning is logical rectilinear, 
but can be variable in space, specified at problem set up. We have implemented two choices for the field 
solution, a fast Fourier transform method (FFT) and a cyclic reduction (CR) package. Although restricted 
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to uniform zoning in the z direction, the FFT package is substantially faster on vector machines like the 
CRAY Y-MP. The left and right boundaries for z are electrodes, and so defined to be equipotential 
surfaces. The system potential may be fixed or determined by an external circuit. At r=0, the radial 
electric field Er must vanish in the absence of a line charge on axis; similarly Er =0 at r=Rmax to 
approximate a transition to plane parallel equipotential surfaces. 

m . REPRESENTATIVE RESULTS 

To demonstrate the utility of our model, we present representative results from simulations of 
filament propagation. The system is 0<z<Zma^=256 \un, and 0<r<Rmax =100 \un. Zoning in the z-
direction is constant, Az =0.50 Jim; there are 51 radial zones, with Ar=0.50 Jim at the axis and 
monotonically increasing to the radial boundary. This small system size and coarse zoning was picked to 
allow a calculation with small enough time step to avoid instability without flux limiting. Material 
parameters are typical for GaAs, except that the mobility model used here is monotonic to avoid 
complications from NDR and Gunn domain formation. A uniform background of electrons and holes 
representing the photo-generated carriers is initialized with a density of no =lxl01 4 cm"3. To initiate the 
filament, a high density needle is initialized at the left hand side of the system, with radius 10 um, length 
60 urn, and density lxlO17 cm"3. The system is initially charge neutral, so that at time t=Q, the electric 
field is uniform with £0=100 kV/cm (negative z-direction); the system potential is fixed in time. In the 
first few picoseconds of the simulation, the electric field is excluded from the needle with a large 
enhancement developing at the tip, which eventually breaks down. The filament then propagates, with the 
density and tip shape determined self-consistently. A contour plot of electron density at f=140 ps (Fig. la) 
clearly shows the initial perturbation (z<60 p.m), a transition region (60 u.m<z<80 u.m), and the 
propagating filament (z>80 \im); contours of potential are shown in Fig. lb. As the filament transits the 
device, the potential drop occurs over a smaller distance between filament head and anode increasing the 
field strength which leads to increasing filament radius and density. This qualitative effect of increasing 
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Fig. 1 Flux limited filament calculation at f=140 ps, showing (a) contours of electron density, and (b) contours of 
electric potential; time step is 4t=5.0xl0"14 s. 
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Fig. 2 Axial electron density ne(z) at time f=140 
ps; solid line is without flux limiting, dashed is flux 
limited (identical to Fig. 1), 4*=5.0xl0~14 s. 

Fig. 3 Magnitude of electric field at filament head 
versus time: solid, 4l=2.5xl0"1^ (no flux limit); 
dashed (flux limited) and dotted (no flux limit), 
A=5.0xl0"14 s. 

radius is missing in previous filament simulations which mocked up the field enhancement in one 
dimensional calculations and picked the filament radius as a parameter [4]. 

This calculation was performed with flux limiting and a time step of 4i=5.0xl0"1'* s. An otherwise 
identical calculation but without flux limiting is compared in Fig. 2a, which shows the axial (r=Q) profile 
of electron density ne at time £=140 ps; unstable oscillations are obvious. The gross features of the two 
simulations are quite similar, except for a somewhat smaller propagation speed in the flux limited case. 
The calculation without flux limiting might be considered satisfactory, except that as the filament finally 
completes its transit across the system, instability terminates the calculation and prevents the subsequent 
determination of the switched current A comparison of the previous two calculations with one using a 
time step 4*=2.5xl0"15 s and no flux limiting is presented in Fig. 2b, which shows the magnitude of the 
electric field at the filament head versus time. 
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