
A PARALLEL MULTIGRID SOLVER FOR SEMICONDUCTOR DEVICE EQUATIONS 

X.Han, D.M.Barry, and MJ.Howes 
Department of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, UK 

Email: een5xh@leeds.ac.uk, dmb and mjh@elec-eng.leeds.ac.uk 

Abstract 
This paper presents a parallel multigrid algorithm for solving semiconductor device equations in two-
dimensions and its implementation on a MIMD parallel machine with distributed memory. The 
numerical experiments of a GaAs MESFET device simulation demonstrate the combined high 
efficiency of the domain decomposition method and the multigrid method. The parallel multigrid 
method using 16 processors is up to 60 times faster dian a single-grid iterative solver using a 
processor. 

I. INTRODUCTION 

Semiconductor device simulations are an important tool for both physicists and device design engineers 
to analyse physical phenomena inside semiconductor devices and to predict the performance of new 
devices prior to fabrication. These physical models require the solutions of the Poisson equation for 
electrical potential and the current continuity equations for electron and hole concentrations. More 
complex models will also solve for the energy and temperature distributions. Numerical techniques must 
be used to solve these equations which require extensive computing power. The increasing complexity 
of both devices and physical models have challenged the available computing resources. 

Many attempts have been made to design fast simulations. Multigrid (MG) methods offer a fast and 
robust iterative method for solving PDEs and have found applications in semiconductor device simulation 
[1-3]. The simulation of semiconductor devices possesses an inherent parallelism which requires many 
repeated operations on different grid points. It is clear that by exploiting die parallelism of the numerical 
algorithms leads to good speed ups of the simulation. The direct solution method has been used on MIMD 
parallel computers for device simulation [4], however this does not show good efficiency in the case of 
normal grid sizes. The Jocobi-SOR, Frankel iterative methods[5] and conjugate gradient iterative 
methods[6] have been implemented on SIMD Connection Machines. This approach is limited when 
modelling the irregular structures of modern devices. Transputer networks have also been used in 
semiconductor device simulation using a Monte Carlo method in [7] and finite difference metiiods in [8]. 

In this paper we present for die first time a parallel implementation of the multigrid iterative method for 
the solution of two-dimensional device equations on a medium-grain MIMD parallel machine with 
distributed memory and demonstrate its parallel efficiency for device simulation. 

n . SEMICONDUCTOR DEVICE EQUATIONS 

The semiconductor model used is based on the drift-diffusion approximation. It includes the Poisson 
equation, the current continuity equations for electrons and holes. The coupled system consists of an 
elliptic differential equation and two parabolic partial differential equations with dependent variables 
potential y, electron concentration n and hole concentration p. After discretisation using a finite difference 
scheme on a rectangular grid with N grid points, together with boundary conditions, we obtain a set of 
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3xN equations with 3xN variables \|r, n, and p. We can write them in symbolic form as 
F( u ) = / (1) 

where F denotes the nonlinear difference operators,/a constant and u is a matrix including \|/, n, and p. 
The Gauss-Seidel (GS) technique coupled with successive over-relaxation (SOR), GS-SOR, is used for 
the Poisson equation along with successive under-relaxation (SUR), GS-SUR, for the continuity equations. 
The coupled Poisson and the continuity equations are solved using GummePs approach[9]. 

in. MULTIGRID METHOD 

It is obvious that PDEs need to be solved on a fine-enough grid to obtain accurate solutions. In 
semiconductor simulation a large truncation error may cause convergence problems. In some circumstances 
the larger die grid spaces the smaller the time step is required to maintain solution stability [10]. Classical 
iterative methods slow down with increasing grid point number. Multigrid iterative methods are highly 
efficient solvers for PDEs, in which the combination of fine grid relaxation and coarse grid correction 
produces a fast convergence rate. The multigrid full approximation scheme (MG-FAS) [11] is used in this 
work. To solve the system F(u)=f the MG method uses a sequence of grids, Gk(l<k<K), where G, is the 
finest grid and GK is the coarsest grid. There exists a system Fk(uk)=fk on each grid Gk. F*k+l is a 
prolongation operator from a coarse grid Gk+, to a fine grid Gk and Rk

k.j is a restriction operator from a 
fine grid Gk_, to a coarse grid Gk. MG-FAS cycles may be defined as follows. 

(a) Interpolate K, and ft to each of the grids and solve Fk(uk)=F^Rk
k.,uk.,) + /?**./(/"*., -

(b) IF Gk is the coarsest grid (k=K) 
solve Fgt[UK)=FK exactly 
Prolongation correction VK = I uK

ae" - uK°" I to the next fine grid GK_, 
ELSE 

Solve F tf« t;=/ t+P*+^+ i 

Prolongation correction Vk = I uk
new - uk

M I to the next fine grid Gk_, 
(c) Do (b) until to the finest grid Gj 

The Gauss-Seidel method is used as smoothing operator on all grids except on the coarsest grid where the 
GS-SOR/SUR method is employed to speed-up the solution. The interpolation operators are bi-linear 
prolongation and half-weighting restriction. 

IV. PARALLELISATION AND IMPLEMENTATION 

There are two methods to exploit parallelism in multigrid methods [12]. One is straightforward and based 
on the domain decomposition technique. In this method the multigrid is divided into several smaller sub-
grids, where each sub-grid includes all levels from the finest to the coarsest. These sub-grids are then 
distributed onto several processors and all processors do the same multigrid operations on different sub-
grids in parallel. This method is referred to as data-parallel multigrid (DPMG). The other method is to 
carry out the multigrid operations concurrently by many processors on different grid levels, in which the 
multigrid is not partitioned but each level of the multigrid is assigned to a processor and several MG 
operations on different grid levels are done at the same time. The second method may be called operation-
parallel multigrid (OPMG). The DPMG method is used in this work. 

Fig.l shows a 3 level multigrid decomposition and sub-domain mapping onto 3 processors. All operations 
mentioned above, solving, smoothing, computing errors, and interpolations between different level, are 
local to each processor. At inter-sub-domain boundaries relaxations and interpolations in a sub-domain will 
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need the boundary data of the adjoining sub-domains. Column dummy points at each side of sub-domains 
along the boundaries are allocated and communications are required at all grid levels to update the values 
of the dummy points. 
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Fig.l Partitioning and Distributing the Multigrid onto 3 Processors 

Thus all levels of the multigrid are partitioned and sub-grids are mapped onto the processors in a way that 
the locality of the interprocessor communication profits from the locality of the discretisation grid to 
reduce the communication overheads. A transputer-based machine hosted by a workstation is used in this 
implementation. The machine includes 16 processors with 2 Mbytes of memory each. These are connected 
as a ring. The parallel version of multigrid operations includes the following steps, 

(a) Solving equations (or smoothing errors) on a grid level and updating boundary points of 
the grid level after every iteration. 

(b) Calculating the errors on a grid level. 
(c) Prolongation from a coarse grid level to the next fine grid level. 
(d) Updating boundary points on the fine grid level. 
(e) Restriction from a fine grid level to the next coarse grid level. 
(f) Updating boundary points on the coarse grid level. 

It is obvious that the amount of communication is proportional to the number of grid points on the side 
boundaries of sub-grids for a ring of processors. The amount of the computation, including all multigrid 
operations, is proportional to the number of grid points in the sub-domains. The parallel overhead is the 
ratio of the amount of the communication and the amount of the computation. So the overhead becomes 
larger as the grid becomes coarser. 

V. EXPERIMENTAL RESULTS 

A GaAs MESFET device with 1 micron channel length has been used in the current work. For a GaAs 
MESFET device, which is entirely unipolar, only the Poisson equation and the continuity equation for the 
majority carrier of electrons need to be solved. The bias voltages applied to the contact source and the 
contact gate are OV with a built-in voltage of - 0.8V on the gate. The external drain voltage is increased 
linearly from 0V to 5V over 1 ps and then fixed at 5V. Comparisons are made between the GS-SOR/SUR 
methods and the MG-FAS method both on a single processor and 16 processors. The simulation time 
required using the two methods are listed in Table 1. The speedup factors due to the multigrid method 
and due to the data-parallel algorithm are calculated from the execution time. 
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It can be seen from the table that the multigrid method is implemented on the transputer-based system 
without significantly impairing the efficiency of the multigrid. The parallel multigrid still produces a 
typical parallel speedup of domain decomposition techniques. Since only a few grid points are left on a 
very coarse grid, communication overhead becomes more significant; the speedup of me parallel multigrid 
method drops from 7.10 to 4.62. The speedup due only to the data-parallel method also decreases from 
13.1 to 8.51 for the same reason. The speedup of both sequential and parallel multigrid is affected by the 
fact that the solution of a time-step can be started from the solution of the previous time-step as a very 
good initial guess and so the initial error is normally smaller compared with general initial problem. Even 
so the overall speedup from the combination of the multigrid method and the domain decomposition 
method is still over 60. 

VI. CONCLUSIONS Table 1 Execution Time(in seconds) and Speedup(Sp) 

It has been demonstrated that it is possible to obtain fast 
solutions for the coupled semiconductor equations using 
the multigrid method on a medium-grain parallel 
machine with distributed memory. Both the parallel 
efficiency of the underlying data-parallel algorithm and 
the convergence rate of multigrid method are 
maintained. By using the parallel multigrid method on a 
16 processor machine the simulation time is reduced by 
more than 60 times compared with the single grid 
sequential solver with the Gauss-Seidel method coupled with successive over/under-relaxation scheme. The 
parallel efficiency is expected to improve with an increase in the problem size. 

Processor No. 

1 

16 

Data-Para. Sp 

GS-
SOR/SUR 

4087 

312.1 

13.10 

MG-FAS 

575.6 

MG-Sp 

7.10 

67.60 4.62 

8.51 60.46t 

t Overall Speedup 
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