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We describe the development of some parallel iterative techniques for solving boundary value 

problems for elliptic partial differential equations. Using domain decomposition techniques, we 

modify standard sequential iterative techniques to obtain effective parallel methods. We contrast 

implementations on distributed-memory and shared-memory scalable parallel processors. We de­

scribe the use of two different programming paradigms, one involving explicit parallelism in a 

distributed-memory model and the other utilizing simple loop decompositions in a shared-memory 

model. Our primary conclusion is that parallel computing on existing commercial parallel su­

percomputers makes it routine to do three-dimensional modeling of semiconductor devices using 

drift-diffusion models. The implications this has for the use of more realistic models of submicron 

devices using Boltzmann-type equations will be mentioned. 

I. Introduction 
We discuss several techniques for solving elliptic boundary value problems via iterative methods 

which have a high degree of parallelism. These techniques are being developed to solve as broad a 

class of problems as possible, but our primary motivation has come from computing the electrostatic 

potential around molecules of biological significance [8]. Moreover, implementation of the methods 

has been done as part of an existing code UHBD [5]. This makes the code development more 

complex but also provides an assessment more realistic than would be available by looking only at 

computational kernels. In addition, we have applied some of the computational techniques to solve 

prototypical problems related to semiconductor device simulation [3]. 

We have studied several variants of standard iterative methods which we have designed to have 

good parallelism. These include variants of the well known ICCG and SOR iterative methods. In 

addition, we have proposed new types of iterations especially suitable for parallel computation [12]. 

We anticipate that all of these methods will be useful as coarse grid solvers for parallel multigrid 

methods [9]. 

In addition to studying different parallel iterative methods, we have used different parallel 

programming paradigms. Two of these are (1) Pfortran [1] and (2) shared memory constructs 

supported by Kendall Square's KSR-1 Fortran [10]. Both approaches have proved adequate for 

implementing the parallel algorithms presented here, due to the high degree of regularity of the 

loops involved. Less regular loops in UHBD, related to its Brownian dynamics phase, have been 

easier to parallelize using shared-memory constructs [4]. 
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II. PSOR 

The Jacobi method for approximating the solution of a linear system is naturally parallel, but 

the typically more efficient Gauss-Seidel method is essentially sequential. In the Jacobi method, 

each component X{ of the approximate solution vector X = (Xi,.. . ,-Xjv) can be computed sepa­

rately of all others, which we can write schematically as 

x!+1=Fi{X*,...tXk), for i = l,2,...,N, (2.1) 

where the Fi are functions of N variables. For example, F — (Fx,.. .,FN) is an affine function 

in the case of solving a linear system. Typically F is sparse, depending only on entries near the 

diagonal, which we indicate by Fj(. . .,Xi-i,Xi,Xi+i,...). With Gauss-Seidel, it is frequently the 

case that X*+1 depends on X*: schematically it is 

Xf+1 = Fi{...,X&,X>tXi+l>...) for i = l,2,...,N. (2.2) 

The same applies for the SOR method, which is just a relaxed (or accelerated) version of Gauss-

Seidel. 

One approach taken to deal with the sequential nature of SOR is to reorder the unknowns so 

that one group of components Xi can be computed independently of others. This is often referred 

to as a coloring of the index set. The most well known case is that of two colors, usually called 

"red-black" ordering since it is similar to a chess board in simple cases. While this can be quite 

effective, it requires communication to be done for each color as opposed to just once for each 

iteration, as is the case for the Conjugate Gradient (CG) method. The number of colors required 

depends on the extent of the sparcity of F. 

A simple technique used in practice is to decompose the index domain (the set of indices i) in 

a way to minimize the communication (either the number of messages required, or the size) among 

neighboring domains. Gauss-Seidel (or SOR) is used within each domain, without updating using 

the appropriate neighboring values. In the two-processor case, it takes the form 

X*+1 = * i ( . . . , * £ ! i \ X l X&.1. • • •) V i, 1 < i < N/2, 

^ ^ ( • • . , 4 / a . ^ i * U 4 4 i - - ) Vi, | + l<i<iST. (2"3) 

Once the local Gauss-Seidel (or SOR) sweep is done, neighboring values are exchanged, similarly to 

what would be done in the Jacobi iteration. For this reason, we refer to this method as the Jacobi-

Gauss-Seidel (JGS) algorithm (or JSOR for its accelerated or relaxed variant). While appealing 

for its simplicity, this algorithm frequently requires a much larger number of iterations than the 

sequential case. 

Remarkably, a simple alternative [14] to JGS and JSOR has convergence properties similar to 

the sequential case, but with communication features similar to JGS/JSOR. We will not attempt 

a complete description of the most general case, but will simply describe an example and present 
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numerical results. Consider the following algorithm: 

Xk+l=Fi(...,X^1\X^...1X
k
N/2,X

k
N%1,...) Vi, l < t < i \ T / 2 , 

xk+1=Fi(...,x
k
N/2,x

k
N%1,...,x^1\x

k,xk
+1,...) vi, y + i<i<j\r. 

This algorithm, which we call PGS (and PSOR for its accelerated or relaxed variant) is parallel 

for sparse F to the extent that the values X^j2,..., X^1 which are produced by the processor 

computing the second line can be computed and made available to the processor computing the first 

line before they are needed. In the case that the functions F{ are suitably sparse, this constraint 

poses no practical limitation to parallelism. 

Figure 2.1 shows performance analysis for calculations done with the 5-point discretization of 

Laplace's equation using a strip decomposition (algorithm (2.4) in the case of two processors). We 

use this type of performance analysis graph to isolate different parts of a code. The computation 

time decreases even superlinearly [4] whereas the communication time (due to the use of a strip 

decomposition) remains nearly constant. The category "other time" simply reflects the part of the 

total time that cannot be accounted for in either of these categories; in this case it is quite small 

(being less that a second for two and four processors). 
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10 

10 
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Figure 2.1. Performance analysis for PSOR for the 5-point discretization 

of Laplace's equation using a strip decomposition on the KSR-1. 

We note that the code for this test was implemented in Pfortran and compiled separately for 

the Delta and KSR-1, without change of source code. The resulting speedup is almost identical for 
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both systems. In fact, the computation and communications times are largely the same for both 

systems. Although it is certainly possible to optimize performance for these distinct architectures, 

this shows that a single programming paradigm can provide efficient execution across a variety of 

different parallel architectures. 

I I I . P I C C G 

Our parallel variants of ICCG have been implemented as part of the code UHBD [5,6] which was 

developed to study the interaction of two molecules of biological significance. One phase involves 

computing the electrostatic potential around the dominant molecule, and the second phase simulates 

Brownian motion of the second molecule in this electrostatic force field. The first phase solves the 

nonlinear Poisson-Boltzmann (NLPB) equation for the electrostatic potential. 

We have modified the electrostatic solver to be able to model semiconductor devices [3]. This 

has provided a stronger test both of the linear and nonlinear parts of the solver, but the principal 

conclusion is that semiconductor devices can be modeled quite effectively on massively parallel 

computers. For example, the following table shows that the solver is scalable in the sense that 

larger problems can be solved without increasing the execution time, by increasing the number of 

processors used. 

Total CPU time in seconds for a MOSPET simulation 

on the Intel Delta for P nodes and mesh of size N3 

N3 P = l 2 4 8 16 32 64 128 256 
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52 
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6 

35 

94 

4 

20 
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4 
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36 
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4 

12 

28 

90 
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5 

13 

26 

91 

228 

8 

16 

28 

76 

197 

440 

One particular case of interest is the so-called memory constrained scaling, the times for which 

are indicated in bold face. This is the case using the smallest number of processors which can run 

the problem, i.e., can fit the problem in local memory. We note nearly constant run times for this 

case. The slanted numbers indicate a different scaling which corresponds to a number of processors 

yielding an execution time that is an order of magnitude smaller. In this case, local memory is not 

utilized fully. 

Most importantly, this table indicates that very large problems can be solved in just a few 

minutes (or just a few seconds, depending on resources available), allowing repeated designs to be 

tested or even optimized. We note also that the best decomposition has not been used for the 

case of large P and moderate N. If a block decomposition were used in this case, even better 

performance would be realized for the times away from the diagonal in the table. 
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One striking conclusion of our work so far [2, 3, 4] is that the total execution time for the 

elliptic solver portion of UHBD is essentially the same for quite disparate computer architectures and 

programming paradigms, as shown in Figure 3.1. The computations on each machine have quite 

distinct internal characteristics. For example, each calculation in done in each machine's single 

precision, which is 8-bytes on the KSR-1 and 4-bytes on the Delta. Due to the shorter word length, 

more iterations actually are done to reach the prescribed tolerance (the same for both machines). 

10 

10 
10 

Comparison of LPBE Solvers on 100x100x100 Grid 

PICCG on KSR1 

PICCG on Delta 
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10 

Figure 3.1. Timing for the linear and nonlinear solvers 

in UHBD on a test problem with a single atom. 

In addition, quite different programming paradigms are being used in each case. For the'Delta 

computations, we used Pfortran [l], an explicitly parallel language. For the KSR computations, 

we used the KSR "tiling" directives [10]. However, the total time is almost identical for 16 and 32 

processors for a uniform mesh of size 1003. 

IV. Conclusions and future work 

We view the current state of affairs in our work as incomplete. We have identified a number 

of promising parallel iterative methods, but we have not yet begun to quantify their domains 

of applicability (and superiority). Moreover, we anticipate these will ultimately find their best 

application as coarse grid solvers in a parallel multigrid technique. 

On the other hand, just using these parallel variants of standard iterative methods, we are able 

to solve two and three dimensional problems of substantial industrial interest remarkably quickly. 

For example, the simulation shown in Figure 3.1 solves a three dimensional problem with a million 
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unknowns in less than a minute using 32 processors. For this reason, it seems appropriate to consider 

more accurate models of semiconductors, e.g., the Boltzmann equation [7], together with methods 

for accelerating such calculations using a diffusion approximation [13]. The understanding of such 

methods in the context of neutral particles (photons, neutrons, etc.) has advanced dramatically 

recently [11]. However, application of these ideas to electron transport is still in a formative stage. 

We hope to address this at a later date. 
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