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Abstract 

Hydrodynamic simulations of high-field transport are performed using a flux-corrected transport 
algorithm. This efficient algorithm uses careful control of numerical diffusion to achieve high 
accuracy in simulating flow phenomena in the presence of steep gradients as can occur in small 
devices where overshoot phenomena are significant. We apply the flux-corrected transport scheme to 
a preliminary evaluation of various hydrodynamic descriptions of high-field transport. 

I. INTRODUCTION 

Continuum or hydrodynamic descriptions of electron transport have long been applied in the 
analysis and design of semiconductor devices because they provide a useful compromise between 
computational simplicity and physical fidelity. As devices continue to scale deep into the sub-micron 
regime such descriptions will continue to be of value although ultimately they must break down. The 
transport in deep submicron regimes is often characterized by high electric fields, rapidly varying 
densities and history-dependent phenomena (including inertia) which make the governing equations 
more hyperbolic in character. From a computational standpoint these factors and particularly the 
need to obtain accurate results in the vicinity of steep gradients represent significant challenges. One 
numerical approach capable of handling these difficulties which has been widely used for fluid 
simulation in other fields is flux-corrected transport (FCT) [1]. In essence, FCT is an explicit, 
spatially high-order finite-difference scheme in which a conservative "flux-limiting" procedure is 
used to prevent the otherwise inevitable unphysical ripples which would appear in the numerical 
solution near steep gradients. In this work, we apply an FCT algorithm to solving hydrodynamic 
equations describing electron transport in small-geometry n+-n-n+ silicon diodes. 

In addition to studying the numerical issues, a primary purpose of our effort is to examine and 
give a preliminary evaluation of various hydrodynamic descriptions of high-field electron transport. 
Such descriptions are founded on a continuum approximation, i.e., that meaningful density variables 
can be defined, and in electron transport work are typically derived by taking velocity moments of 
the Boltzmann equation. Alternatively, hydrodynamic descriptions may be developed using classical 
field theory [2]. The former approach emphasizes the connections to the underlying microscopic 
physics whereas the latter, which takes the density variables as primitives, focuses on the consequences 
of general principles of balance, invariance and symmetry, i.e., on what is physically possible given a 
certain set of primitive densities. Obviously, the larger this set the more physics can be described at 
the expense of utility. In Sec. II we outline the equations which stem from standard choices for the 
density variables and then discuss numerical methods and solutions in Sees. Ill and IV. 

H. HYDRODYNAMIC MODELS OF ELECTRON TRANSPORT 

We consider describing the flow of the population of conduction band electrons through a 
semiconductor as the flow of a single fluid through a solid. The primitives of the theory are 
therefore the quantities which define this electron fluid and its interaction with itself, with the lattice 
and with the electrostatic field at every point. As a first case, we assume that the fluid is describable 
by the primitives of mass/charge density, momentum density and energy density. The laws of mass, 
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momentum and energy balance and of electrostatics then lead to a set of equations constraining these 
densities as follows [2]: 

(la) n t + V -(nil) = 0 , mn^- = - Vp* + V-tn - qn(E + E n ) , V- D = q(ND - n) , 

(lb) m i £ = - V-qn+tn :d+^-^+qnEJ-u+mnsn, p ^ - = - V q 1 + E ~ + q n E ^ u + p s 1 , 

where n, u, mnen, qn, mnsn are the number density, velocity, energy density, heat flux and energy 
source density of the electron gas, p, NQ, pe1, q1 and ps1 are the mass density, ionized impurity density, 

energy density, heat flux and energy source density of the lattice, En and E* are the recoverable and 
dissipative parts of the force (per charge) exerted by the lattice on the gas, p" and xn are the electron 
gas pressure and viscous stress, E and D (=P+47cE) are the electric field and electric displacement, d is 
the rate-of-deformation tensor and d/dt is the material derivative. 

The differential equations (1) represent a set of physical constraints on the density variables; 
they are not sufficient however to determine these densities. To make the system determinate 
constitutive equations specifying the material response must also be supplied. For example, the usual 
energy transport (ET) model [3] results if we select the following constitutive equations 

pn = kTnn, xn = 0 , En = 0 , E? = J * - ~ 
(2) r d ^ p T l 

men = IkT" , qn = - fD L p nkv"P, mnsn = - ps1 = - -&- [sf-u • u + ^ " P - T1) 
w 

where m* is the electron effective mass, T11 and T1 are electron and lattice temperatures, U-LF and DLF 
are the low-field mobility and diffusivity and xw is an energy relaxation time. Now, as discussed in 
Ref. 2, when heat conduction is small the density variables of mass and momentum become adequate 
to describe the system. In this case, the energy balance equations (lb) need not be solved and the 
governing equations become (la) plus constitutive equations which in Ref. 2 were selected as 

(3a) p ^ k T b , Tn = XlV-u+2VLyd, E r
n = - x & L , E^ -U- , 

where d t M-

(3b) il = Lt" , E = E - t d E ] 
rdt 

sat 

Xv and p-v are viscosity coefficients, % [=(m*-m)/q] is a drag rate coefficient arising from Bragg 
reflection, usat is the saturation velocity and xT is a "scattering equilibration time". We note the 
important inclusion in these equations of i) viscous effects and ii) memory or rate effects in the 
scattering (including as the origin of effective mass). The mobility model in (3b) is that of Ref. 5 
with a rate term introduced to represent the delay associated with scattering. This reduced set of 
electrohydrodynamic (EHD) equations, which may be regarded as a physically well-founded version 
of Thornber's augmented diffusion-drift description [4], has obvious computational advantages and 
will be explored in our simulations below. 

m . FLUX-CORRECTED TRANSPORT 

Flux-corrected transport (FCT) is a powerful numerical method for integrating generalized 
continuity equations [1] which has been widely used for fluid simulation in other fields but has not 
been applied heretofore to semiconductor transport problems. FCT is an explicit, spatially high-
order finite-difference scheme which is especially effective at providing high-accuracy solutions in 
the vicinity of steep gradients without exhibiting the unphysical ripples often seen in conventional 
schemes as a result of numerical dispersion. It accomplishes this by carefully controlling the amount 
of numerical diffusion in the scheme using a conservative "flux-correction" procedure which 
preserves monotonicity with maximal accuracy. Explicitly, FCT first computes provisional values for 
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£k the density (of mass, momentum or energy) pf at the next time step k at each mesh point i using a 
low-order, strongly-diffused scheme. It then improves the accuracy of these values by removing as 
much of the numerical diffusion as possible without generating new or accentuating existing extrema. 
This is done in a conservative manner via 

(4a) 
where 

(4b) 

Pi=p i 1+1/2 i-l/2 

£ 
i+1/2 = S-max|0,min[S- (p*+2-p*+1 )> *MM 

•k 

i+1 
~k \ c /~k ~k 

Pi-1 

is the corrected flux, S = sgnfpv - prj and u.j+i/2 is an antidiffusion coefficient chosen to minimize 
the residual numerical error [6]. That the corrections are functions of the solution means that the 
scheme is nonlinear. We note that the idea behind FCT has been incorporated in a number of other 
numerical schemes known collectively as nonlinear monotone methods. Among these are the 
essentially non-oscillatory (ENO) schemes [7] which have been applied to semiconductor transport 
problems [8]. All of these methods have similar advantages; we believe FCT to be preferred only 
because of its conceptual simplicity which enables, for example, straightforward generalization to 
more than one dimension [9]. In the calculations of this paper, FCT is used to solve the 
hydrodynamic equations and the electrostatics is solved conventionally in a Gummel iteration. 

IV. SIMULATION RESULTS 

As a test problem we model the standard n+-n-n+ diode with the geometry and doping levels 
chosen to match those of Refs. 10 and 11. A one-dimensional boundary value problem modeling 
this structure is readily formulated in the ET [(1) with (2)] and EHD [(la) with (3)] descriptions. We 
first solve this problem using FCT in the familiar ET case. The calculated steady-state velocity profile 
for a 0.4^m diode biased at 1.5V is shown in Fig. 1 along with the electron temperature profile. 
These results are essentially the same as those obtained in Ref. 11 using an implicit scheme. The ET 
description exhibits velocity overshoot which is qualitatively reasonable apart from the well-known 
spurious peak seen near the anode. The origin of the latter has been widely discussed and is not of 
interest here. However, in one additional run (Fig. 1) we included viscosity [using xn of (3a)] in the 
ET simulation and found that the spurious peak largely disappears indicating that viscosity needs to 
be considered if the ET model is to be fully understood. In any event, our main point is that FCT 
provides an efficient scheme for performing conventional energy transport simulations. 

We next apply FCT to solving the EHD equations. Considering the same problem as in Fig. 1, 
the qualitatively reasonable result shown in Fig. 2 is obtained. We note that the EHD simulation 
shows no evidence of the spurious peak seen in the ET simulation. In Fig. 2 we also give an 
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Fig. 1. ET velocity (with and without viscosity) 
and temperature profiles. 

Fig. 2. Profiles of the EHD velocity and the 
relative error in the steady-state current. 
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indication of the numerical error introduced by the FCT scheme. We plot the deviations from 
uniformity in the steady state current as a relative error; the high accuracy possible with an FCT 
algorithm (here in single precision) is evident. Next, in Fig. 3 we compare the ET and EHD 
descriptions with profiles computed using diffusion-drift theory (DD) and by Monte Carlo solution 
of the Boltzmann equation (MC) [10]. This calculation is for a 0.1\im diode biased at IV and the 
prediction of DD theory shows that the diode is operating in a strong velocity overshoot regime. In 
comparison with the "exact" MC solution, the EHD description is seen to do quite well both 
qualitatively and quantitatively. In this calculation, the one Fitting parameter is the choice of xT to be 
0.13psec. The ET description does significantly less well both in shape and magnitude, however, it 
should be said that no effort to adjust parameters such as the thermal conductivity has been made in 
the simulation. Finally, in Fig. 4 we exhibit the important roles of viscous and rate effects in the EHD 
description. The viscous effects smooth velocity gradients via dissipation, an effect which is partially 
offset by the rate effects which steepen the solution by delaying the onset of velocity saturation. 
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Fig. 3. Comparison of ET and EHD velocity 
profiles with diffusion-drift (DD) and 
Monte Carlo (MC). 

V. CONCLUSIONS 
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Fig. 4. EHD velocity profiles computed with and 
without mobility rate and viscous terms. 

The main conclusion from this work is that the FCT algorithm provides a robust numerical 
approach to solving hydrodynamic equations descriptive of high field transport in semiconductors. 
It is a conceptually simple approach for which there exists a wide body of experience and software. 
It provides efficient, high accuracy solutions in the presence of steep gradients, and it is readily 
extendable to more than one space dimension. In this work, we applied this algorithm to the study of 
two high-energy transport theories. In the context of modeling overshoot phenomena, we find that 
an electrohydrodynamic description in which an energy balance equation is not solved gives accurate 
solutions with significant computational savings. Although these results are promising it is clear that 
more work is needed to fully validate this description and to determine its precise limitations. 
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