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Abstract 

We have developed a general numerical method to solve the periodic time-dependent Schrodinger 
equation where Quantum Transmitting Boundary Method (QTBM) is used to formulate the bound
ary conditions of the far-from-equilibrium open systems. The approach is applied to the resonant 
tunneling diode (RTD) with a superposition of a dc and sufficiently small ac bias. Results of the 
linear admittance, rectification coefficient and second harmonic generation coefficient are presented 
as a function of frequency and bias. The calculation has shown that at high frequency (several 
THz), the intrinsic linear response of RTD becomes capacitive in the NDR region and the recti
fication coefficient and second harmonic generation coefficient show a resonant enhancement. It 
indicates that the intrinsic high frequency limit (fmax) is influenced more by the electron exchange 
between the reservoir and the resonant state in the well than by the resonant width. Our results are 
consistent with those obtained by Wigner function, but in disagreement with most of the results 
obtained by Schrodinger equation and Green's function. This contradiction is solely due to the 
problems of definition of reactive current component in the literature. 

I INTRODUCTION 

High speed device and circuit applications generate considerable interest for the study of the tunnel
ing heterostructure devices. Since the first detection of resonant tunneling diode (RTD) at 2.5 GHz 
by Sollner and co-workers [1] both experimental and theoretical research work have been widely 
carried out [2-6]. 

The existing theoretical results unfortunately conflict with one another. For example, those 
obtained by conventional tunneling theory based on Schrodinger equation predict inductive behavior 
at high frequency while Wigner function gives capacitive results. To settle the contradiction, we 
have developed a systematical numerical method based on single-particle Schrodinger equation with 
boundary conditions set up by Quantum Transmitting Boundary Method (QTBM)[7]. This method 
performs task under any bias condition. The application to RTD shows a consistent characteristics 
with that of Wigner function. The electron exchange between the reservoir and the resonant state 
in the well plays more important role in the high frequency response than we expected. Two 
definitions of the current reactive component are to be discussed and compared, which will unify 
the conflicting results by different approaches. 

II THEORETICAL MODEL 

In this section, an one-dimensional numerical model of periodic time-dependent Schrodinger equa
tion is to be presented. We consider an open system with two boundary regions (reservoirs): left. 
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Figure 1: The numerical model of periodic time-dependent Schrodinger equation. 

and right. The left voltage is Vieft = VL + VLcosu>t, the right VTiaht = VR + VRCOsut, and inside 
the system v(x, t) = Vdc(x) + v(x) cosu>t. All the incoherent processes are ignored and the flat band 
potential distribution is assumed, as illustrated in Fig. 1. 

Within the open system the wavefunction has the form: 

# M ) = E V>m(*)e-,w-i<"°t. (2.1) 

Inserting (2.1) into the time dependent Schrodinger equation ihdip/dt = Hip and collecting terms 
of equal frequency leads to these equations, in discretized form [8] : 

-Sj4>o,j-i + (dj-E)Tpotj-sj+1il;o,j+1 = 0, 

~SJV>=FI,J-I + (dj -E±hu)ifaj - sj+1 tfolti+1 - f^-J faj = 0, 

-*j<famj-l + (dj ~E± mhu)lfemJ - sj+1^mtj+1 - (%-j 0qr(m-l)J = 0, (2.2) 

where dj and SJ are the diagonal and off-diagonal elements of the Hamiltonian matrix defined in 
[8], respectively. 

Since we are now dealing with the open system, the appropriate boundary conditions should 
be applied to (2.2). Fig. 1 shows the physical picture of a single electron with energy E incident 
from the left reservoir. At the two boundary regions, the wavefunction can be written as [9] : 

00 / \ °° / ~ \ 
,—ilwt (2.3) 

where B = L (left reservoir) or B = R ( right reservoir) and Jt(x) is the Bessel function. 

We formulate the boundary conditions by implementing Quantum Transmitting Boundary 
Method (QTBM) to the boundary wavefunctions (2.3). Incorporate these boundary conditions 
with (2.2), a set of linear equations are readily formed, which compose a block tridiagonal matrix. 
This final matrix is the system to be solved. 
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Figure 2: Linear response of a RTD structure. 

Ill AC SMALL SIGNAL RESPONSE 

The total current can be represented as: 

M I = -qh/m* T PkIm < ^^- > . 
k dx 

where Pk is the probability for the wave vector k. 

The current components are defined as (v = VR — v^): 

I = Io + liyve^ + y^ve-^ + ^ar^ + ^ v h ^ + aiye-^) 

or one can rewrite the above definition in a sinusoidal form: 

J = To + Re(y)v cos(ut) - Im(y)v sin(ut) 
1 1 1 

+2arectv2 + -Re(a,2W)v2 cos(2wt) - -1 m(a2w)v2 sin(2ut) 

(3.1) 

(3.2) 

(3-3) 

Because these authors neglected the minus sign in the definition of the sinusiodal form, the 
inductive results [3,4] claimed by them are essentially capacitive which is in agreement with our 
calculation as well as with that of Wigner function. 

IV RESULTS 

We apply our method to a GaAs/AlGaAs RTD structure with barrier width 28.25 A and well width 
45.2 A. The results of the linear response ( yr = Re(y) , yi = Im(y)) and the nonlinear reponse of 
the second order( a.2u, , arect) are demonstrated in Fig. 2 and Fig. 3. Our calculations confirm that 
the linear response of RTD is capacitive at high frequencies and the nonlinear responses ( a2w and 
arect) do show enhancement peaks. According to our calculation the fmax derived from the linear 
responses and the peak positions of the nonlinear responses are less influenced by the width of the 
resonant state Er. They are more closely related with the energy difference between the resonant 
state Er and the reservoir. 
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Figure 3: Non-linear response of a RTD structure. 

V C O N C L U S I O N S 

We have demonstrated for the first time the three dimensional plots of the linear admittance and 
the nonlinear responses of the second order for a RTD structure as a function of bias and frequency. 
The results obtained from the periodic-time dependent Schrodinger equation and Wigner function 
are characteristically agreeable. The numerical method presented here is able to be applied to any 
tunneling heterostructure with arbitrary potential distribution within the device. 

References 

[1] Sollner, T. C. L. G., W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, 1983, 
Appl. Phys. Lett. 43 , 588. 

[2] Frensley, W. R., 1990, Rev. Mod. Phys.62, 745. 

[3] Mains, R. K., and G. I. Haddad, 1988, J. Appl. Phys. 64, 5041. 

[4] Liu, H. C., 1991, Phys. Rev. B 43 , 12538. 

[5] Kislov, V. and Kamenev, A., 1991, Appl. Phys. Lett. 59, 1500. 

[6] Wingreen, N. S., 1990, App. Phys. Lett. 56, 253 

[7] Lent, C. S. and Kirkner, D. J., 1990, J. Appl. Phys. 67, 6353. 

[8] Frensley, W. R. in Chapter 9, Heterostructures and Quantum Devices ( W. R. frensley and 
N. G. Einspruch, eds), Academic Press, San Diego, 1994. 

[9] Coon, D. D. and Liu, H. C , 1985, J. Appl. Phys. 58, 2230. 

238 




