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Abstract 

We present a numerical technique which yields, as the solutions of a linear eigenvalue problem, the posi
tions of transmission poles and zeros in resonator structures with arbitrary potential profiles. We present 
several examples to demonstrate the utility of this numerical technique. 

I. INTRODUCTION 

A common computational problem is to find the quasi-bound states of resonant transmitting systems. 
For an isolated bound system, because of the zero wavefunction boundary conditions, the Hamiltonian of 
the system is Hermitian, hence the system has only bound states. However, for an open unbound system, 
because the wavefunctions at the boundary are non-zero, the complex boundary condition may lead the 
Hamiltonian of the system non-Hermitian, hence the system possesses quasi-bound states for resonant 
transmission [1]. In general, to find the quasi-bound states of a given system with scattering boundary con
ditions requires to search for the zeros of an energy-dependent matrix determinant [2, 3]. 

In this paper, we use another approach to solve this problem. Based on the quantum transmitting 
boundary method (QTBM) and a finite element discretization [4], we present an eigenvalue algorithm 
which yields the positions of the transmission poles. We can also use this algorithm to calculate the posi
tions of transmission zeros in quantum waveguide systems [5]. 

II. APPROACH 

In general, a transmission problem shown in Figs. 1(a) and 2(a) may be formulated as an inhomoge-
neous problem, Au=aP. Here, A is an energy-dependent coefficient matrix, u is the unknown wavefunc
tion, and a P is the source flux. Specifically, a can be either the incoming amplitude, i(E) in figure 1(a), or 
the transmission amplitude, t(E) in figure 2(a), and P is an energy-dependent vector. For a given source 
flux aP, the solution of the inhomogeneous system is uniquely determined. We can also force the source 
flux aP=0, as shown in figures 1(b) and 2(b), which results in a homogeneous problem, Au=0. This is, in 
general, a nonlinear eigenvalue problem. Using the finite element discretization, furthermore, results in a 
linear eigenvalue problem. 

For the transmission problem, shown in Fig. 1(a), Schrodinger's equation can be written as the follow
ing inhomogeneous system, where all matrices are constant and the energy dependence is shown explicitly, 

( H - E Q + k L B L + k R B R ) \ | / = i(E)kLp . (1) 

Here, i(E) is the amplitude of the forcing incoming flux at energy E. The wavenumbers at the left and right 
boundaries of the system are kL and kR, respectively, which are related through the external bias Vbias by, 
kR

2-kL
2 = (2m*eVbias)/fi

2; all symbols have their usual meaning. The bound state problem is contained in 
the above system as (H - E Q) y = 0, and the matrices BL , BR , and p arise due to the open boundaries. 
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Figure 1. Schematic diagram of a resonant structure with a 
forcing incoming flux (thick arrow), (a) shows an incident 
wave from the left (source) with its transmitted and reflected 
components, which results in an inhomogeneous problem; (b) 
setting the incident wave (source) to zero, leads to an eigen
value problem. Its solutions give us the quasi-bound states of 
the system, or the positions of the transmission poles. 
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Figure 2. Schematic diagram of a resonant structure with a 
forcing transmitted flux (thick arrow), (a) shows an incident 
wave from the left with its transmitted (source) and reflected 
components, which results in an inhomogeneous problem; (b) 
setting the transmitted wave (source) to zero, leads to an 
eigenvalue problem. Its solutions give us the positions of the 
transmission zeros. 

Forcing the incoming flux to zero, i(E)=0 as shown in Fig. 1(b), produces the decaying quasi-bound 
states of the system. Equation (1) becomes a polynomial eigenvalue problem of degree p=2 for an unbi
ased system (Vbias = 0 and kL=kR) and of degree p=4 for a biased system. In the latter case, we perform the 
following transformations, kR=k+A and kL=k-A, with A=(m*eVbjas)/(2R2k). This leads to a fourth-order 
polynomial eigenvalue problem in k, 

( A 0 + k A , + i ? A 2 + k 3 A 3 + k 4 A 4 ) \ | / = 0 , (2) 

where the above A's are related to the matrices in equation (1). The polynomial eigenvalue problems of 
degree p can be rearranged into linear eigenvalue problems with p times the original matrix size. Since the 
resulting matrix is not Hermitian in this case, the eigenvalues are located in the complex-energy plane. The 
real and imaginary parts of these eigenvalues correspond to the energies and lifetimes of the quasi-bound 
states of the resonant transmission system. 

The transmission problem may also be viewed as one in which the resonant structure is forced to yield 
a certain transmitted amplitude t(E), as schematically shown in Fig. 2(a). In this case, the required incident 
and reflected amplitudes are the unknowns. Using the boundary condition y(xR) = t(E) exp(ikRxR) at the 
right edge xR of the system, we may re-write equation (1) in a form where only terms proportional to t(E) 
appear on the right-hand-side. Terms proportional to the incident amplitude i(E) appear on the left-hand-
side, and i(E) now is part of the solution vector y which contains the unknowns. 

Forcing the transmitted flux to zero, t(E)=0 as shown in figure 2(b), produces the transmission zeros. It 
can be shown that the corresponding eigenvalue problem is linear in the energy, and has the form, 

( H ' - E Q ' ) \ j / ' = 0 , (3) 

where the matrices H ' and Q' are related to the corresponding ones in (1). For t-stub systems, furthermore, 
it can be shown that H ' is also Hermitian. As a consequence, the eigenvalues in this case, which are the 
energies of the transmission zeros, always occur on the real-energy axis. This result is consistent with our 
previous scattering matrix investigations, where we also proved that transmission zeros always occur on 
the real-energy axis [5]. 
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III. EXAMPLES 

We now present several examples to demonstrate the utility of our approach. First, we apply our 
method to a multi-barrier resonant-tunneling structure with applied external bias. Next, we locate the posi
tions of transmission poles and zeros in quantum waveguide systems, which include t-stub and loop struc
tures. We compare the results of our direct eigenvalue method to the more conventional method of 
searching in the complex-energy plane for the zero of the system determinant. 

1. Multi-Barrier Resonant-Tunneling Structure with Applied Bias 

As our model system, we consider a 10-barrier resonant-tunneling structure in a uniform electric field 
of £=150 kV/cm. The barrier width and height are 1.4 nm and 5.0 eV, respectively, and the well width is 
4.9 nm. For the finite element discretization, we use an average mesh size of 0.7 nm for the numerical cal
culation, which yields matrices of dimension 92 in equation (1). We choose the middle of the structure as 
the zero point of the potential. 

Applying our eigenvalue method to this structure, we obtained the energies of the quasi-bound states, 
which are the poles of the transmission amplitude in the complex-energy plane. It is well known that no 
transmission zeros exist in this case. It is an easy matter to numerically obtain the eigenvalues of the linear 
system (2) with dimension 368. The results are plotted in Fig. 3, and the numerical values for the real and 
imaginary parts of the poles are given in tabular form. The horizontal lines indicate the computed spatial 
electron densities in each quasi-bound state. The formation of minibands is evident, which are derived 
from the individual states in each well. The imaginary part of each pole gives the inverse of the lifetime for 
the corresponding quasi-bound state. As one would expect, the longest-lived states are concentrated in the 
middle of the structure, and states toward the edges are more "leaky." Note that the imaginary parts vary 
by many orders of magnitude. This makes a direct search for the locations of the poles in the complex-
energy plane very costly since a very fine mesh has to be used in order to avoid missing poles. In contrast, 
our direct method yields the energies of all poles, without any search, as the solutions of a linear eigen
value problem. 
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Figure 3. The quasi-bound states of a multi-barrier resonant tunneling structure in a uniform electric field. The states are plotted 
as horizontal lines at the real energy of the resonance, and the lines are drawn for those positions at which the absolute value of the 
wavefunction is larger than a threshold value. The real- and imaginary-parts of the resonances in each miniband are also given. 

221 



Figure 4. Shown are 
contour plots of the 
absolute value of the 
transmission amplitude 
for t-stub and loop struc
tures, which are sche
matically shown in the 
insets. The '+* and 'X* 
symbols represent the 
positions of transmission 
poles and zeros, respec
tively, which were calcu
lated by our direct 
eigenvalue method. The 
energy of the first stand
ing wave in the stub 
(Ej=56.2 meV) is used 
as the unit of energy. The 
results obtained by both 
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2. Quantum Waveguide Structures 

We choose t-stub and loop structures as our model systems, which are schematically shown in the 
insets of Fig. 4. The solid lines represent the waveguides which are transmission channels. The shaded 
boxes represent tunneling barriers (0.5 eV high and 1 nm thick) and the full filled box terminates the stub. 
For the t-stub structures, the length of the stub is 10 nm and the distance between two tunneling barriers on 
the main transmission channel is 4 nm. For the asymmetrical loops shown here, the lengths of the two arms 
are 10 and 11 nm, respectively. Spatial mesh dimensions of 0.2 nm are used in the numerical calculations. 

It is well known that these systems possess both transmission poles and zeros [5]. The contour lines in 
Fig. 4 represent the absolute value of the transmission amplitude in the complex-energy plane, which is 
obtained from a solution of the inhomogenoues problem (1). Poles and zeros, which occur on the real-
energy axis, are easily discerned. Using the appropriate eigenvalue problem, we also show the directly cal
culated locations of the transmission poles and zeros which are indicated by the symbols '+' and 'X', 
respectively. Note the perfect agreement between the two methods. Again, our technique directly yields 
poles and zeros without a need to search for them in the complex-energy plane. 

IV. SUMMARY 

We presented a new approach for directly calculating the positions of transmission poles and zeros in 
resonant transmission structures. In general, a transmission problem is an inhomogeneous problem. Forc
ing the source flux to zero, for either the incoming wave or the transmitted wave, results in a non-linear 
eigenvalue problem. Using the finite element method, furthermore, these eigenvalue problems become lin
ear. It is then an easy matter to directly calculate the energies of the transmission poles and zeros. 
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